Solutions

1. Show that the proposition $\sim (Q \Rightarrow (P \lor \sim Q))$ is a fallacy.

Solution: Truth table:

\overline{P}	Q	$\sim Q$	$P \vee {\sim} Q$	$Q \Rightarrow (P \vee {\sim} Q)$	${\sim}(Q\Rightarrow (P\vee{\sim}Q))$
\mathbf{T}	Τ	F	${ m T}$	${ m T}$	F
\mathbf{T}	\mathbf{F}	\mathbf{T}	${ m T}$	${ m T}$	${ m F}$
\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	${ m T}$
\mathbf{F}	F	\mathbf{T}	${ m T}$	${ m T}$	\mathbf{F}

The last column doesn't contain true values only. Hence, the proposition $\sim (Q \Rightarrow (P \lor \sim Q))$ is a fallacy.

2. Negate the statement $\forall x \in \mathbb{R} \ \exists a, b \in \mathbb{R}$ such that if x < a then x < b. (Note: neither the statement nor its negation has to be true).

Solution: The negation is

$$\sim (\forall x \in \mathbb{R} \ \exists a, b \in \mathbb{R} : \ x < a \Rightarrow x < b)$$
$$(\exists x \in \mathbb{R} :) \sim (\exists a, b \in \mathbb{R} \ x < a \Rightarrow x < b)$$
$$(\exists x \in \mathbb{R} :) \ (\forall a, b \in \mathbb{R}) \sim (x < a \Rightarrow x < b)$$
$$(\exists x \in \mathbb{R} :) \ (\forall a, b \in \mathbb{R}) \ (x < a) \ \land \sim (x < b)$$
$$(\exists x \in \mathbb{R} :) \ (\forall a, b \in \mathbb{R}) \ (x < a) \ \land \ (x \ge b)$$

Finally,

 $\exists x \in \mathbb{R} \text{ such that } \forall a, b \in \mathbb{R} \ b \leq x < a$

3. For $(a,b),(c,d)\in\mathbb{Z}\times\mathbb{Z}$ define $(a,b)\sim(c,d)$ to mean that a+d=b+c. Is this an equivalence relation? Support your answer.

Solution: The definition of the given relation should be read as $(a,b)\sim (c,d) \iff a+d=b+c$

Reflexivity: $a + b = b + a \implies (a, b) \sim (a, b)$.

Symmetry:

$$(a,b) \sim (c,d) \Leftrightarrow a+d=b+c \Leftrightarrow b+c=a+d \Leftrightarrow c+b=d+a \Leftrightarrow (c,d) \sim (a,b).$$

Transitivity:
$$(a,b) \sim (c,d)$$
 and $(c,d) \sim (e,f) \Leftrightarrow a+d=b+c$ and $c+f=d+e$.

If we add e to the first equation and a to the second equation we obtain

$$a + d + e = b + c + e$$
 and $a + c + f = a + d + e$

which gives
$$a+c+f=b+c+e$$
 or $a+f=b+e$ \Leftrightarrow $(a,b)\sim (e,f).$

The relation is reflexive, symmetric, and transitive. Hence it is an equivalence relation.

4. Let A be a set and $\mathscr{P}(A)$ be its power set. Show that a function $f:A\to\mathscr{P}(A)$ is not a surjection.

Solution: See the textbook, proposition 0.3.27, page 21.

5. Let F be an ordered field and $x, y, z \in F$. Show that $x \neq 0 \implies x^2 > 0$.

In a proof you may use the following properties of F:

$$(1) \quad x > 0 \quad \Leftrightarrow \quad -x < 0; \quad (2) \quad x > 0, \ y < z \quad \Rightarrow \quad xy < xz; \quad \text{and} \quad (3) \quad x < 0, \ y < z \quad \Rightarrow \quad xy > xz.$$

Proof: See the textbook, proposition 1.1.8, part (iv), page 27.

6. By using the Archimedean property of real numbers prove that

if
$$t \in \mathbb{R}$$
, $t < 0$ then $\exists n \in \mathbb{N}$ such that $-\frac{1}{n} > t$.

Proof: By property (i) of the proposition 1.1.8 we have
$$t < 0 \Leftrightarrow -t > 0$$

Consider the Archimedean property with
$$x = -t > 0, y = 1$$
. Then $\exists n \in \mathbb{R}$ such that $n(-t) > 1$.

We multiply both sides of the last inequality by a positive
$$\frac{1}{n}$$
 to get $-t > \frac{1}{n}$ or $\frac{1}{n} < -t$

Multiplication by (-1) and the property (iii) of the proposition 1.1.8 give
$$-\frac{1}{n} > t$$
.