Math 0413

Midterm Exam

Spring 2018

Solutions

1. Give the definition of least upper bound property of a set.

Solution: An ordered set A has the least upper bound property if every non-empty subset $E \subset A$ that is bounded above has a least upper bound in A.

2. Negate the statement "For every $a, b \in \mathbb{R}$ with a < b there is an $r \in \mathbb{Q}$ with a < r < b".

Solution: "There are $a, b \in \mathbb{R}$ with a < b such that for all $r \in \mathbb{Q}$ we have $a \ge r$ or $r \ge b$ ".

3. Suppose \sim is an equivalence relation on a set A. Show that $\forall a, b \in A \ [a] \cap [b] \neq \emptyset$ implies [a] = [b], where [a] denotes the equivalence class of the element a.

Solution: $[a] \cap [b] \neq \emptyset \Rightarrow \exists y \in [a] \cap [b]$, that is, $a \sim y$ and $b \sim y \Rightarrow a \sim b$ by transitivity and $b \sim a$ by reflexivity.

We need to show that the two sets [a] and [b] are equal.

If $x \in [a]$, then $x \sim a$, $a \sim b \implies x \sim b$ by transitivity, that is, $x \in [b]$.

Conversely, if $x \in [b]$, then $x \sim b$, $b \sim a \implies x \sim a$ by transitivity, that is, $x \in [a]$.

Therefore [a] = [b].

4. Let $A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$, $B = \{2k : k \in \mathbb{N}\}$. Show that |A| = |B|.

Solution: Let $f: A \to B$ is defined by $f(x) = \frac{2}{x}$. Then f is a bijection.

f is a surjection: Let $n \in B$. Then $\exists k \in \mathbb{N}$ such that n = 2k. Hence $n \in \mathbb{N}$. Take $x = \frac{2}{n}$.

Obviously $x \in A$ since $n \ge 2$. $f(x) = \frac{2}{x} = \frac{2}{2/n} = n \in B$.

So, for any element n in B there is an element x in A such that f(x) = n. Therefore f is a surjection.

f is an injection: Let $x_1, x_2 \in A$. Then

$$f(x_1) = f(x_2) \implies \frac{2}{x_1} = \frac{2}{x_2} \implies \frac{x_1}{2} = \frac{x_2}{2} \implies x_1 = x_2.$$

Therefore f is an injection.

So f is a bijection and it follows that |A| = |B|.

5. Consider the increasing sequence of real numbers $x_1 = 1$ and $x_{n+1} = \sqrt{1 + 2x_n}$ for $n \ge 1$. Use the Principle of Mathematical Induction to show that $x_n < 4 \ \forall n \ge 1$.

Proof: By induction. Define the statement P(n) as $x_n < 4$.

Basis statement P(1): $x_1 = 1 < 4$ and the basis statement is true.

Induction step: Assume that the statement P(n) is true, i.e. $x_n < 4$.

Then for n+1 we have $x_{n+1} = \sqrt{1+2x_n} < \sqrt{1+2\cdot 4} = \sqrt{9} = 3 < 4$.

Therefore, P(n+1) is true.

By the principle of induction, P(n) is true for all natural n, i.e. $x_n < 4 \ \forall n \ge 1$.

6. Prove that if $A = \left\{1 - \frac{1}{n}, n \in \mathbb{N}\right\}$ then $\sup A = 1$.

Proof: $0 \in A \Rightarrow A \neq \emptyset$.

 $1 - \frac{1}{n} < 1 \implies 1$ is an upper bound of A.

 $A \in \mathbb{R}$ and the set \mathbb{R} has the least upper bound property $\Rightarrow b = \sup A$ exists in \mathbb{R} .

1 is an upper bound of $A \Rightarrow b \leq 1$.

Assume $b \neq 1$. Then $b < 1 \implies 1 - b > 0$.

Consider the Archimedean property with x = 1 - b > 0 and y = 1.

Then $\exists n \in \mathbb{N} \text{ such that } n(1-b) > 1 \implies 1-b > \frac{1}{n} \implies b < 1 - \frac{1}{n} \in A$

 \Rightarrow b is not an upper bound of A. A contradiction! \Rightarrow the assumption $b \neq 1$ was wrong

 $\Rightarrow b = 1 \Leftrightarrow \sup A = 1.$

Alternative proof: Define $B = \{\frac{1}{n}, n \in \mathbb{N}\}$. Then A = 1 + (-1)B.

By corollary 1.2.5 inf B = 0.

By proposition 1.2.6

 $\sup A = \sup (1 + (-1)B) = 1 + \sup ((-1)B) = 1 + (-1) \cdot \inf B = 1 + (-1) \cdot 0 = 1.$