Solutions

1. By constructing truth table find if the proposition $\sim P \Rightarrow (P \lor \sim Q)$ is a rule of inference or not.

Solution: The proposition is conditional. Its truth table is

\overline{P}	Q	$\sim P$	$\sim Q$	$P \vee {\sim} Q$	$\sim P \Rightarrow (P \lor \sim Q)$
${\rm T}$	Τ	\mathbf{F}	\mathbf{F}	${ m T}$	${ m T}$
\mathbf{T}	\mathbf{F}	F	T	${ m T}$	${ m T}$
F	${\rm T}$	${\rm T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}
F	F	T	T	${ m T}$	T

The last column doesn't contain true values only. Hence, the conditional proposition $\sim P \Rightarrow (P \lor \sim Q)$ is not a rule of inference.

2. Let $f: A \to B$ be a function and $C \subset B$. Show that

$$f^{-1}(B \setminus C) = A \setminus f^{-1}(C)$$

Solution: Let $x \in f^{-1}(B \setminus C) \Rightarrow f(x) \in B \setminus C \Rightarrow f(x) \notin C$ $\Rightarrow x \notin f^{-1}(C) \Rightarrow x \in A \setminus f^{-1}(C) \Rightarrow f^{-1}(B \setminus C) \subset A \setminus f^{-1}(C)$ Now let $x \in A \setminus f^{-1}(C) \Rightarrow x \notin f^{-1}(C) \Rightarrow f(x) \notin C \Rightarrow f(x) \in B \setminus C$ $\Rightarrow x \in f^{-1}(B \setminus C) \Rightarrow A \setminus f^{-1}(C) \subset f^{-1}(B \setminus C)$. Therefore, $f^{-1}(B \setminus C) = A \setminus f^{-1}(C)$.

3. Show that $|[0,1]| = |\mathbb{R}|$.

Solution: The function $f = \tan(x)$ is a bijection between the interval $(-\pi/2, \pi/2)$ and \mathbb{R} . The function $g = \pi x - \frac{\pi}{2}$ is a bijection between intervals (0,1) and $(-\pi/2, \pi/2)$.

Therefore the function $f \circ g = \tan \left(\pi x - \frac{\pi}{2}\right)$ is a bijection between intervals

 $(0,1) \text{ and } \mathbb{R} \implies |(0,1)| = |\mathbb{R}|.$

 $(0,1)\subset [0,1]\subset \mathbb{R} \ \Rightarrow \ |\, (0,1)\,| \leq |[0,1]| \leq |\mathbb{R}|. \quad \text{Therefore } |[0,1]| = |\mathbb{R}|.$

4. (a) Give the definition of the principle of induction.

Solution: See the textbook, page 16.

(b) Prove that 8 divides the number $3^{2n} - 1$ for any natural n.

Proof: By induction.

Basis statement: For n = 1 we have $3^{2n} - 1 = 3^2 - 1 = 8$, 8 divides 8 and the basis statement is true.

Induction step: Assume that the statement is true for n, i.e. $3^{2n} - 1 = 8m$ for some integer m. Then for n + 1 we have

$$3^{2(n+1)} - 1 = 9 \cdot 3^{2n} - 1 = 9 \cdot 3^{2n} - 9 + 8 = 9(3^{2n} - 1) + 8 = 9 \cdot 8m + 8 = 8(9m + 1).$$

Therefore, 8 divides $3^{2(n+1)} - 1$ and the statement is also true for n + 1.

By the principle of induction, 8 divides $3^{2n} - 1$ for all natural n.

5. Let $a, b, x \in \mathbb{R}$. Prove that if $x \ge a \ \forall a < b \ \text{then} \ x \ge b$.

Solution: Proof by contradiction. Assume that $x \geq b$ is not true. Then x < b is true. \mathbb{Q} is dense in \mathbb{R} \Rightarrow $\exists a \in \mathbb{Q}$ such that x < a < b. This contradicts to the statement that $x \geq a$ $\forall a < b$. Therefore the assumption $x \geq b$ was wrong. Then x < b is true.

An alternative solution: Proof by contradiction. Assume that $x \geq b$ is not true.

Then
$$x < b$$
 is true $\Rightarrow x + b < b + b \Rightarrow x + b < 2b \Rightarrow \frac{x + b}{2} < b$.

$$\text{Take } a = \frac{x+b}{2} \ \Rightarrow \ a < b.$$

We also have
$$x < b \implies x + x < x + b \implies 2x < x + b \implies x < \frac{x + b}{2} \implies x < a$$
.

That contradicts to the fact that if a < b then $x \ge a$. Hence the assumption x < b was wrong. Therefore $x \ge b$ must be true.

6. Show that a convergent sequence has a unique limit.

Solution: See the textbook, proposition 2.1.6, page 49.

7. (a) Give the definition of a convergent sequence.

Solution: A sequence is convergent to its limit x if $\forall \varepsilon > 0 \ \exists M \in \mathbb{N}$ such that $\forall n \geq M$ we have $|x_n - x| < \varepsilon$.

(b) Is the sequence $\left\{\frac{n}{5n+1}\right\}$ convergent? Support your answer by using ε and M from the definition of a convergent sequence. If the sequence is convergent then find the limit.

Solution: For given $\varepsilon > 0$ find (by Archimedean property) $M \in \mathbb{N}$ such that $M\varepsilon > \frac{1}{25}$

or
$$\frac{1}{25M} < \varepsilon$$
.

Then for $\forall n \geq M$ we have

$$\left| x_n - \frac{1}{5} \right| = \left| \frac{n}{5n+1} - \frac{1}{5} \right| = \left| \frac{5n-5n-1}{5(5n+1)} \right| = \left| \frac{-1}{5(5n+1)} \right| = \frac{1}{5} \cdot \frac{1}{5n+1} \le \frac{1}{5} \cdot \frac{1}{5n} = \frac{1}{25} \cdot \frac{1}{n}$$

$$\leq \frac{1}{25} \cdot \frac{1}{M} < \varepsilon.$$

Hence, the sequence is convergent. Its limit is $\frac{1}{5}$.

8. (a) Give the definition of a Cauchy sequence.

Solution: A sequence $\{x_n\}$ is Cauchy if $\forall \varepsilon > 0 \ \exists M \in \mathbb{N}$ such that $\forall n, m \geq M$ we have $|x_n - x_m| < \varepsilon$.

(b) Using the definition of Cauchy sequence prove or disprove that the sequence $\left\{\frac{n^2-7n}{n^2}\right\}$ is Cauchy.

Solution: For given $\varepsilon > 0$ find (by Archimedean property) $M \in \mathbb{N}$ such that $M\varepsilon > 14$ or $\frac{14}{M} < \varepsilon$.

Then for $\forall n \geq M$ and $\forall m \geq M$ we have

$$|x_n - x_m| = \left| \frac{n^2 - 7n}{n^2} - \frac{m^2 - 7m}{m^2} \right| = \left| 1 - \frac{7}{n} - 1 + \frac{7}{m} \right| = \left| \frac{7}{m} - \frac{7}{n} \right| \le \frac{7}{m} + \frac{7}{n} \le \frac{7}{M} + \frac{7}{M} = \frac{14}{M} < \varepsilon.$$

Hence, the sequence is Cauchy.

9. Show that if a sequence $\{x_n\}$ is convergent then it is Cauchy.

Solution: See the textbook, page 74.

10. Find if the series
$$\sum_{n=1}^{\infty} \frac{n^4 - 3n + 1}{(-2)^n}$$
 is conditionally convergent, absolutely convergent, or

divergent. Support your answer.

Solution:
$$n \ge 1 \implies 3n \ge 1 \iff 3n-1 \ge 0 \iff -3n+1 \le 0$$

$$\Leftrightarrow n^4 - 3n + 1 \le n^4 \quad \forall n \in \mathbb{N}.$$

We also have $n^4 - 3n + 1 > 0$ $n \ge 2$.

Therefore,
$$\sum_{n=2}^{\infty} \left| \frac{n^4 - 3n + 1}{(-2)^n} \right| \leq \sum_{n=2}^{\infty} \frac{n^4}{2^n}$$

For the right hand side series with $x_n = \frac{n^4}{2^n}$ we apply the Ratio Test:

$$L = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = \lim_{n \to \infty} \frac{(n+1)^4}{2^{n+1}} \cdot \frac{2^n}{n^4} = \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^4 \cdot \frac{1}{2} = \frac{1}{2} < 1$$

and the series $\sum_{n=2}^{\infty} \frac{n^3}{2^n}$ is convergent.

Therefore, the series $\sum_{n=2}^{\infty} \left| \frac{n^4 - 3n + 1}{(-2)^n} \right|$ is convergent by the comparison test

$$\Rightarrow \sum_{n=2}^{\infty} \frac{n^4 - 3n + 1}{(-2)^n}$$
 is convergent absolutely

$$\Rightarrow \sum_{n=1}^{\infty} \frac{n^4 - 3n + 1}{(-2)^n}$$
 is convergent absolutely.

An alternative solution: Ratio test: $L = \lim_{n \to \infty} \left| \frac{(n+1)^4 - 3(n+1) + 1}{(-2)^{n+1}} \cdot \frac{(-2)^n}{n^4 - 3n + 1} \right|$

$$= \lim_{n \to \infty} \left| \frac{(n+1)^4 - 3(n+1) + 1}{n^4 - 3n + 1} \cdot \frac{(-2)^n}{(-2)^{n+1}} \right| = \frac{1}{2} < 1.$$

 \Rightarrow the series $\sum_{n=1}^{\infty} \frac{n^4 - 3n + 1}{(-2)^n}$ is convergent absolutely.