Quiz 4

Summ	er	2011
Math	11:	80

Your name:

1. [5 points] Show that the vectors
$$\bar{\mathbf{v}}_1 = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$
, $\bar{\mathbf{v}}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, and $\bar{\mathbf{v}}_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ form an orthogonal basis for \mathbb{R}^3 . Then find the coordinate vector $[\bar{\mathbf{w}}]_{\mathcal{B}}$ of $\bar{\mathbf{w}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ with respect to the basis $\mathcal{B} = \{\bar{\mathbf{v}}_1, \bar{\mathbf{v}}_2, \bar{\mathbf{v}}_3\}$.

2. [5 points] Determine whether

$$A = \left[\begin{array}{cc} 1 & 2 \\ -1 & 4 \end{array} \right]$$

is diagonalizable and, if so, find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP=D$.

- 3. [5 points] Let W be the subspace spanned by the vectors $\bar{\mathbf{w}}_1 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$ and
- $\bar{\mathbf{w}}_2 = \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}$. Find a basis for W^{\perp} .

bonus problem [5 points extra] Show that the matrices $A=\begin{bmatrix}1&1\\0&1\end{bmatrix}$ and $B=\begin{bmatrix}1&0\\1&1\end{bmatrix}$ are similar.