

University of Pittsburgh Senior Design – BioE 1160-1161

Central Venous Cannulation: Venous Entry Device

Jenn Adams Janet Chan Evan Hill Matt Wolf

Central Venous Cannulation: Venous Entry Device

- Overview / Background
- Market
- Connector Design and Production
- Handle Design and Production
- Pressure Sensor Design
- Simulator Design
- Validation and Verification

Central Venous Cannulation

- Definition: Insertion of a catheter into a vein leading directly to the heart (Internal jugular most common)
- Purpose:
 - Administer IV fluids when no peripheral veins are accessible
 - Administer drugs that cannot be given peripherally (Vasodilation/constriction drugs)
 - Measurement of central venous pressure

Problems

Steps 1 - 3:

1. Needle inserted into IJ

• Bulky syringe: physician discomfort, mistakes lead to multiple insertions, lead to infection

2. Tubing connected to check venous entry

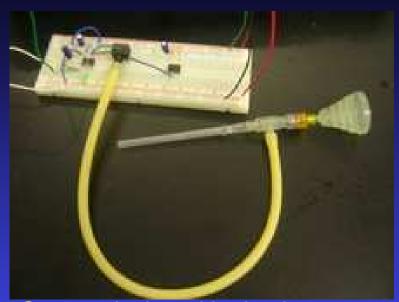
- Blood exposed when removing syringe from needle: infection
- Significant free space needed to lower and raise tubing
- Blood exposed during lowering and raising: infection
- 3. Guide wire inserted into vein through needle
 - Needle short and light, difficult to keep steady while inserting guide wire: complex

Market

By the numbers:

- 5 million CVC procedures per year
- 2.013 incidents of infection every 1000 patients (year 2000)
- = 10,000 procedures complicated by infection.
- CVC complications costs: \$6,000 to \$90,000 per patient¹
- Estimating \$10,000 per complication, yearly expenses: \$100 million

Vast majority of infections occur during steps 1 - 3...


Solution: Combine these 3 steps!

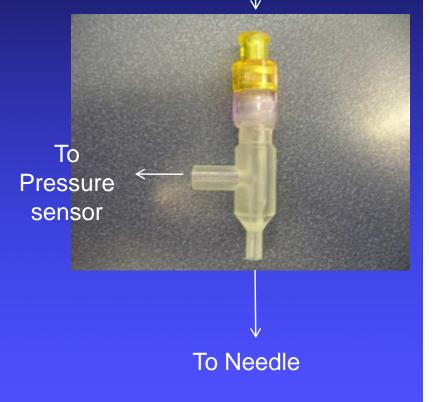
1. Moretti E.W. et al. "Impact of central venous catheter type and methods on catheter-related colonization and bacteremia." *Journal of Hospital Infection*. 2005. 61:139-145.

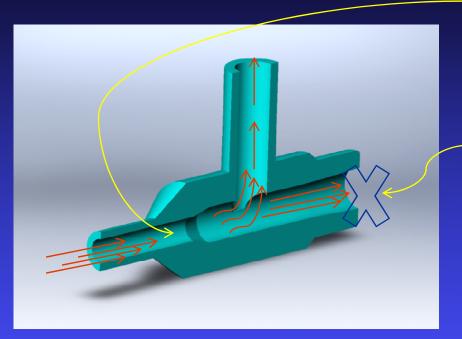
Device Design

- The design must address the issues which cause complications with the current CVC method
- New design consists of three parts:
 - A three way connector with a one way valve
 - A handle
 - A pressure sensor

Intended Final Device Design

Current device with circuit pressure sensor


Intended device with miniaturized pressure sensor


Three Way Connector

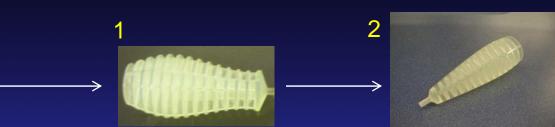
- Provides ports for needle, sensor, and handle
- Handle and needle are in line with each other
- Pressure sensor is perpendicular
- Clear plastic casing for visualizing blood flow
 - Currently SLA

Handle connection to duckbill checkvalve

Three Way Connector


- The internal cavity allows blood flow from the vessel
- A duckbill checkvalve fits into the back port
 - Guide wire can be inserted through valve

Support Handle



- Provides a counter weight to rest on the clinician's hand
 - Does not require awkward hand positions
 - Allows the clinician more mobility
 - Increased comfort should lead to reduced error in placement

Handle Prototypes

3

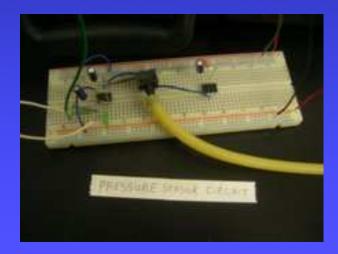
Clinician feedback: Too fat Clinician feedback: Too long

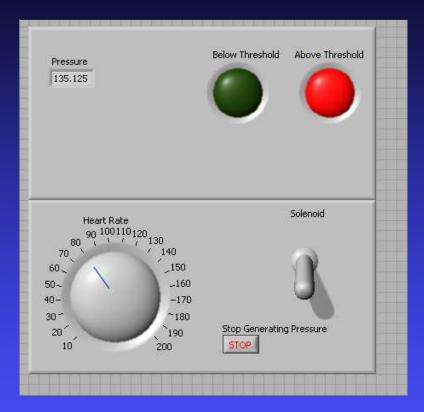
Initial clinician feedback indicated a screw driverlike handle to be held as a pencil would provide comfort and stability

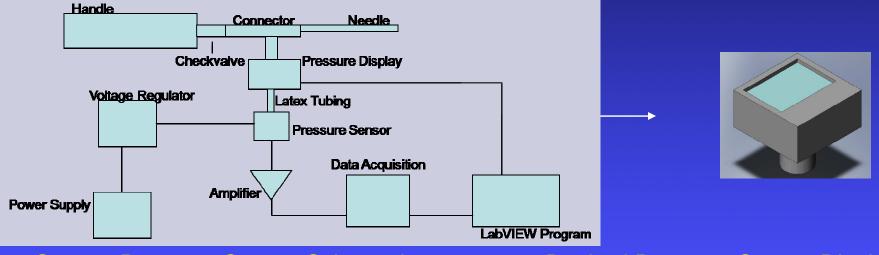
Less moment arm, more control

Clinician feedback: Too light

Just right

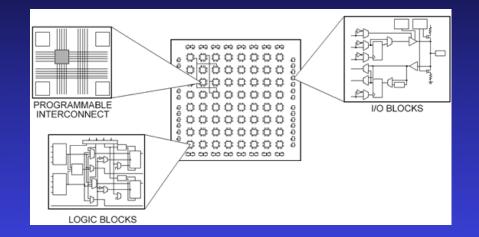

Device Prototype Production


- Current prototype was fabricated at the Swanson Center by stereo lithography
- Suggested final three-way connector material: polyethylene
 - Cheap
 - Easy to grip firmly with latex gloves
 - Transparent for visualizing blood flow
 - Easily sterilized
- Suggested final support material: rubber coated high density polyethylene


- Key aspect of device design
 - Eliminates syringe
 - Eliminates additional pressure checking step
 - Provides continuous pressure readings to clinician

- Currently the PX05 Pressure Sensor from Omega
 - Tubing from the pressure sensor port allows blood to flow to the sensor
 - Transducer has a voltage output that can be read through LabVIEW
 - LabVIEW converts the voltage to pressure and then provides an output to the display

 Images of the current circuit (bottom) and the LabVIEW readout (right)

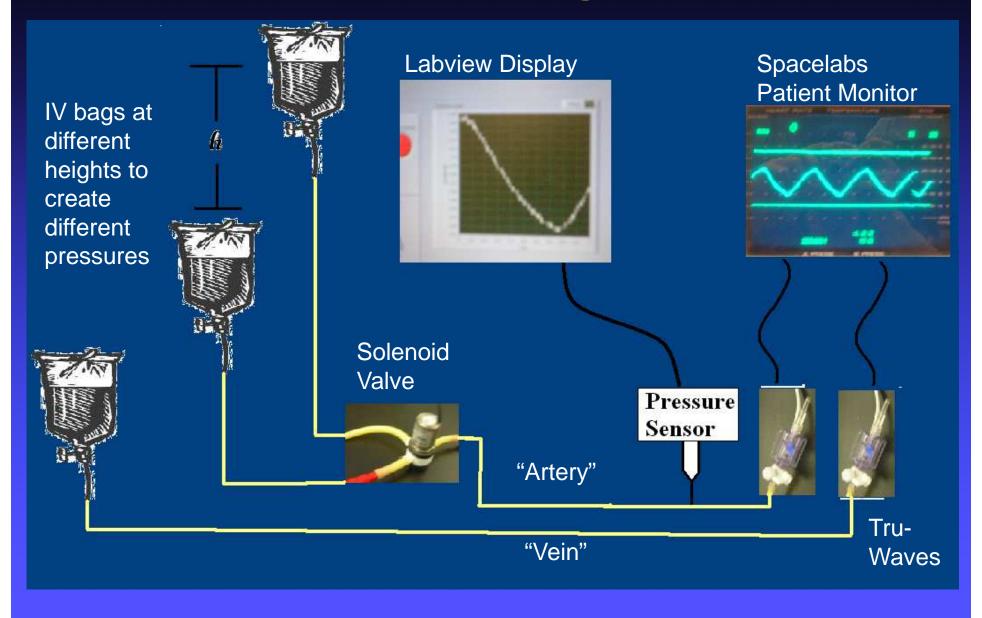


Current Pressure Sensor Schematic

Desired Pressure Sensor Display

 Eventually all parts of the pressure sensor circuit can be incorporated on an FPGA chip and fit into the small display case

http://zone.ni.com/devzone/cda/tut/p/id/3357


Proof of Concept of the Pressure Sensor

- Can the pressure sensor distinguish high (~80mmHg) from low (~7mmHg) i.e. above/below 30 mmHg?
- Need to simulate arterial and venous pressures to test this goal

Pressure Generating Apparatus

- To give control over a range of pressures & pulsatility
- Venous pressure:
 - IV bag of known height: to generate pressure following P = ρgh (estimate!)
- Arterial pressure:
 - 2 IV bags of different heights (same concept)
 - Connect to a solenoid valve to switch between the two and thus create pulsatility
- Verify the pressures/pulsatility from the simulator using a Patient monitor from Dr. Timothy Maul

Pressure Generating Apparatus

Demonstration Video

Verification of Device

- Goal is for it to correctly distinguish between high and low pressures >90% of the time over a range of pressures
 - Tested both arterial and venous at different heights
 - Compare our LabView display with the patient monitor to verify that the pressures are correct (within 4mmHg)

	Correct Pressures		Correct Light	Incorrect Light
Venous	12	0	12	0
Arterial	9	1	10	0

Results: Correct pressure identification in 21 out of 22 trials (95.5% success rate)

How Does it Compare to the PDS?

 Original goals: Differentiate High/Low pressure **X** Recognize pulsatility X Display Waveform LED display Ergonomic handle Cost: no greater than \$5 more Fit within 1x1 cm display case

Clinician Evaluation

- Device not ready for med students or largescale clinical testing...
- Dr. William McIvor (anesthesiologist extraordinaire) will provide preliminary feedback
- After using the device he will be asked to complete a survey
 - Did he feel comfortable using it?
 - Was it easy to understand?
 - What was the most undesirable aspect?

Division of Labor

- Janet Chan: Documentation
- Evan Hill: Handle and Connector Prototype and Verification
- Jennifer Adams: Pressure Sensor and Verification
- Matt Wolf: Pressure Simulator and Verification

Acknowledgments

- Mentors
 - Dr. Joe Samosky
 - Dr. William McIvor
- Resources
 - Andy Holmes
 - Dr. Timothy Maul
 - WISER Center
 - Dr. Patzer's Lab
- Funding
 - Department of Bioengineering
 - Generous gift of Hal Wrigley and Linda Baker

Questions

Additional Reference

<u>Central Venous Access and Monitoring</u>, Dr Graham Hocking, Frimley Park Hospital, Portsmouth Road, Frimley, Camberley, Surrey, GU16 5UJ