Graphs of Parabolas

$y=x^{2}$
$y=x^{2}+1$
$y=x^{2}+4$
$y=x^{2}-3$
typical graph
typical graph moved up 1 unit
typical graph moved up 4 units
typical graph moved down 3 units

$y=x^{2} \quad$ typical graph
$y=2 x^{2} \quad$ typical graph slightly thinner
$y=5 x^{2} \quad$ typical graph much thinner
$y=0.5 x^{2} \quad$ typical graph slightly wider $y=0.2 x^{2} \quad$ typical graph much wider

$y=x^{2} \quad$ typical graph
$y=-2 x^{2} \quad$ typical graph inverted
$y=-5 x^{2} \quad$ typical graph much thinner, inverted
$y=-0.2 x^{2} \quad$ typical graph much wider, inverted

Graphing Quadratic Functions

A quadratic function is a function whose rule is a quadratic polynomial. That is, it can be written in the form

$$
f(x)=a x^{2}+b x+c, \quad a \neq 0
$$

or

$$
\mathrm{f}(\mathrm{x})=\mathrm{a}(\mathrm{x}-\mathrm{h})^{2}+\mathrm{k}, \quad \mathrm{a} \neq 0 .
$$

The graph of such a quadratic function is a parabola with the following information:

1) The parabola opens $\left\{\begin{array}{l}\text { up if } a>0 \\ \text { down if } a<0\end{array}\right.$
2) The parabola is $\left\{\begin{array}{l}\text { thinner if } \\ \text { wider if } 0<\left|\begin{array}{l}a \\ a\end{array}\right|<1\end{array}\right.$
3) The vertex of the parabola has coordinates (h, k) where

$$
\begin{aligned}
\mathrm{h}=-\frac{\mathrm{b}}{2 \mathrm{a}} & \mathrm{k}
\end{aligned} \quad \mathrm{f}(\mathrm{~h}) \mathrm{t}=\mathrm{c}-\mathrm{ah}^{2} \mathrm{l}
$$

4) The axis of symmetry of the parabola is the line $x=h$

Note that it is much easier to graph when the function has the form $f(x)=a(x-h)^{2}+k$. Here are some suggestions for graphing quadratic functions.

Step 1: Write in standard form and identify a, b, and c .
Step 2: Calculate $\mathrm{h}: \quad \mathrm{h}=-\frac{\mathrm{b}}{2 \mathrm{a}}$
Step 3: Calculate k : $\mathrm{k}=\mathrm{f}(\mathrm{h}) \quad \mathrm{OR} \quad \mathrm{k}=\mathrm{c}-\mathrm{ah}^{2}$
Step 4: Find all of the intercepts.
Step 5: Plot sufficiently many points and make use of the intercepts and the vertex (h, k)
Step 6: Draw the smooth graph.

Example: Graph $f(x)=x^{2}-4 x-3$.

Vertex: $(2,-7)$
Intercepts: $(0,-3),(5,0),(-1,0)$

Example: Graph $f(x)=x^{2}+2 x-3$. Find the vertex and any intercepts.

Example: Graph $f(x)=-2 x^{2}+4 x-3$. Find the vertex and any intercepts.

Applications of Quadratic Functions

In many applications, you need to find information about the maximum or minimum value of a function. If your model is a quadratic function, then the maximum or minimum value can be found by finding the vertex of the associated parabola. If a >0, then the function has a minimum, while if a <0, then the function has a maximum.

This quadratic function has a graph which is a parabola. In this case, $a>0$. The minimum value of the function occurs at the vertex of the parabola.

This quadratic function has a graph which is a parabola. In this case, $\mathrm{a}<0$. The maximum value of the function occurs at the vertex of the parabola.

Example: Leslie Lahr owns and operates Aunt Emma's Blueberry Pies. She has hired a consultant to analyze her business operations. The consultant tells her that her profits, $\mathrm{P}(\mathrm{x})$, from the sale of x units of pies, are given by

$$
\mathrm{P}(\mathrm{x})=120 \mathrm{x}-\mathrm{x}^{2}
$$

How many units of pies should she sell in order to maximize profit? What is the maximum profit?

Solution: Note that the profit is given by the quadratic function $P(x)=120 x-x^{2}$. The graph is a downward opening parabola. Thus the function has a maximum value which we can find by getting the vertex of the parabola.

$$
\begin{array}{rlrl}
\text { Using } \mathrm{a} & =-1, \mathrm{~b}=120 \text {, and } \mathrm{c}=0 \text {, we get } \\
& & \\
\mathrm{h} & =-\frac{\mathrm{b}}{2 \mathrm{a}} & \mathrm{k} & =\mathrm{c}-\mathrm{ah}^{2} \\
& =-\frac{120}{2(-1)} & & =0-(-1)(60)^{2} \\
& =60 & & =3600
\end{array}
$$

Thus, she should sell 60 pies, and the maximum profit is $\$ 3600$.

Example: Suppose that if the price (in dollars) of a videotape is $p(x)=40-\frac{x}{10}$, then x tapes will be sold.
(a) Find an expression for the total revenue from the sale of x tapes.

Solution: Revenue $=$ demand $*$ price

$$
\begin{aligned}
\mathrm{R}(\mathrm{x}) & =\mathrm{x} \cdot \mathrm{p}(\mathrm{x}) \\
& =\mathrm{x}\left(40-\frac{\mathrm{x}}{10}\right) \\
\mathrm{R}(\mathrm{x}) & =40 \mathrm{x}-\frac{\mathrm{x}^{2}}{10} \quad \text { <- answer }
\end{aligned}
$$

(b) Find the number of tapes that will produce maximum revenue.

Solution: (Find the x-coordinate of the vertex!)

$$
\begin{aligned}
\mathrm{h} & =-\frac{\mathrm{b}}{2 \mathrm{a}} \\
& =-\frac{40}{-\frac{2}{10}} \\
& =200 \quad 200 \text { tapes }
\end{aligned}
$$

(c) Find the maximum revenue.

Solution: (Find the y-coordinate of the vertex!)

$$
\begin{aligned}
\mathrm{k} & =\mathrm{c}-\mathrm{ah}^{2} \\
& =0-\left(-\frac{1}{10}\right)(200)^{2} \\
& =4000
\end{aligned}
$$

$\$ 4000$

Graphing Polynomial Functions

Graphs of $\mathrm{y}=\mathrm{ax}^{\mathrm{n}}$, where n is odd and $\mathrm{a}>0$

Graphs of $\mathrm{y}=\mathrm{ax}^{\mathrm{n}}$, where n is odd and $\mathrm{a}<0$

Relating Polynomial Functions and their Graphs

Degree 2:
positive x^{2} coefficient

negative x^{2} coefficient

Degree 3:
 negative x^{3} coefficient

Example: Determine which of the following graphs is the graph of
a) $f(x)=-2 x^{2}+x-4$
b) $g(x)=4 x^{3}-5 x+3$

Things to notice about graphs of polynomials

1. The graph of a polynomial function is a smooth, unbroken curve whose domain is the set of real numbers. Thus, the graph extends forever to the left and right.
2. When $|x|$ is large, then the graph behaves similar to the graph of the associated monic polynomial of highest degree. The graph moves sharply to or from the x -axis.
3. A polynomial function of degree n has at most $n x$-intercepts.
4. A polynomial function of degree n has less than n total peaks and valleys.

Suggestion for graphing a polynomial function:

1. Factor the function.
2. Find all intercepts.
3. Create a sign chart for the function.
4. Use the sign chart and information about polynomial functions to produce the graph.

Examples: Sketch the graph of the following polynomial functions:
a) $y=f(x)=(2 x+3)(x-1)(x+2)$
b) $y=f(x)=3 x^{4}+x^{3}-2 x^{2}$
c) $y=f(x)=x^{4}-4 x^{2}$
d) $y=f(x)=x^{3}-4 x^{2}$

Horizontal asymptotes of rational functions

Case 1: If the degree of the numerator is less than the degree of the denominator, then the line $y=0$ is a horizontal asymptote

Case 2: If the degree of the numerator is equal to the degree of the denominator, then the horizontal asymptote is the line $\mathrm{y}=\frac{\mathrm{a}}{\mathrm{c}}$, where a and c are the highest coefficients of the numerator and denominator, respectively.

Case 3: If the degree of the numerator is greater than the degree of the denominator, then there is no horizontal asymptote.

Example: Find the horizontal asymptotes of the following, if possible.
a) $y=\frac{3}{x+4}$
b) $y=\frac{4-x}{3+x}$
c) $y=\frac{2 x^{2}}{3 x-4}$
d) $y=\frac{2 x^{2}-x+6}{x^{2}+x-6}$

Solution:
a) $y=0$
b) $y=-1$
c) none
d) $y=2$

If a number c makes the denominator zero, but not the numerator, then the line $\mathrm{x}=\mathrm{c}$ is a vertical asymptote. The graph will never touch a vertical asymptote!

Example: Find the vertical asymptotes of the following, if possible.
a) $y=\frac{3}{x+4}$
b) $y=\frac{4-x}{3+x}$
c) $y=\frac{2 x^{2}}{3 x-4}$
d) $y=\frac{2 x^{2}-x+6}{x^{2}+x-6}$

Solution:

a) $x=-4$
b) $x=-3$
c) $x=\frac{4}{3}$
d) $x=-3, x=2$

Suggestion for graphing a polynomial function: FIASCo

1. Factor the function.
2. Find all Intercepts.
3. Find all Asymptotes.
4. Create a Sign Chart for the function.
5. Use the sign chart and information about rational functions to produce the graph.

Examples: Sketch the graph of the following:
a) $y=f(x)=\frac{x+3}{x-1}$
b) $y=f(x)=\frac{2 x-3}{2 x+1}$
c) $y=f(x)=\frac{4}{x-2}$
d) $y=f(x)=\frac{2 x^{2}}{x^{2}-4}$

