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Piotr Haj lasz1

Introduction

These are the notes that I prepared for the participants of the Summer School in
Mathematics in Jyväskylä, August, 1998. I thank Pekka Koskela for his kind invitation.

This is the second summer course that I delivere in Finland. Last August I delivered
a similar course entitled Sobolev spaces and calculus of variations in Helsinki. The
subject was similar, so it was not posible to avoid overlapping. However, the overlapping
is little. I estimate it as 25%. While preparing the notes I used partially the notes that
I prepared for the previous course. Moreover Lectures 9 and 10 are based on the text
of my joint work with Pekka Koskela [33].

The notes probably will not cover all the material presented during the course and
at the some time not all the material written here will be presented during the School.
This is however, not so bad: if some of the results presented on lectures will go beyond
the notes, then there will be some reasons to listen the course and at the same time if
some of the results will be explained in more details in notes, then it might be worth
to look at them.

The notes were prepared in hurry and so there are many bugs and they are not
complete. Some of the sections and theorems are unfinished.

At the end of the notes I enclosed some references together with comments. This
section was also prepared in hurry and so probably many of the authors who contributed
to the subject were not mentioned. I would like to to appologise for that. Actually the
number of relared papers is so huge that it would be not possible to mention all the
names.

I kindly welcome all the comments concerning the notes. I think the best way is to
send comments by e-mail: hajlasz@mimuw.edu.pl

Lecture 1

Dirichlet problem. The classical Dirichlet problem reads as follows. Given an open

1Permanent address: Institute of Mathematics, Warsaw University, ul. Banacha 2, 02-097
Warszawa, Poland. Current address: Max-Planck Institute for Mathematics, Inselstr. 22-26, 04-103
Leipzig, Germany.
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domain Ω ⊂ IRn and g ∈ C0(∂Ω). Find u ∈ C2(Ω) ∩ C0(Ω) such that{
∆u = 0 in Ω ,
u|∂Ω = g .

This problem arose in XIX’th century physics. We will explain the physical context of
the equation, but we will not be very rigorous. It is just to give an intuition for the
principles of the calculus of variations that will be developed in the sequel.

Let Ω ⊂ IR3 be a vacuum region and let E : Ω→ IR3 be an electric field. Given two
points x, y ∈ Ω, the integral ∫ y

x
E · ds (1)

does not depend on the choice of the curve that joins x with y inside Ω (provided Ω is
simply connected). By the definition (1) equals to∫ b

a
E(γ(t)) · γ̇(t) dt,

where γ is a parametrization of the given curve that joins x with y. Here and in the
sequel A · B denotes the scalar product. We will also denote the scalar product by
〈A,B〉.

Fix x0 ∈ Ω and define the potential u as follows

u(x) = −
∫ x

x0

E · ds.

Potential u is a scalar function defined up to a constant (since we can change the base
point x0). We have

E = −∇u .
It is well known that the electric field is divergence free divE = 0 and hence

∆u = div∇u = −divE = 0.

Thus potential u is a harmonic function inside Ω. Assume that the vacuum Ω is bounded
by a surface ∂Ω. Moreover assume that the surface contains an electrical charge that
induces potential g on ∂Ω. Electrical charge on the boundary induces an electric field
in Ω and hence the induced potential u in Ω has the following properties: ∆u = 0 in
Ω, u|∂Ω = g. Thus u is a solution to the Dirichlet problem stated at the begining.

The energy of the electric field (up to a constant factor) is given by the formula

Energy =
∫
Ω
|E|2 =

∫
Ω
|∇u|2 .

It is a general principle in physics that all the sistems approach the configuration with
the minimal energy. Thus given potential g on the boundary ∂Ω one may expect that
induced potential u in Ω has the property that it minimizes the Dirichlet integral

I(u) =
∫
Ω
|∇u|2
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among all the functions u ∈ C2(Ω) such that u|∂Ω = g. As we will see it is true. Now
we put all the physics aside and till the end of lectures we will be concerned with the
rigorous mathematics.

Theorem 1 (Dirichlet principle) Let Ω ⊂ IRn be an arbitrary open and bounded set
and let u ∈ C2(Ω). Then the following statements are equivalent:

1. ∆u = 0 in Ω,

2. u is a critical point of the functional I in the sense that

d

dt
I(u+ tϕ)|t=0 = 0 for all ϕ ∈ C∞

0 (Ω) .

If in addition u ∈ C2(Ω), and u|∂Ω = g, then we have one more equivalent condition:

3. u minimizes I in the sense that I(u) ≤ I(w) for all w ∈ C2(Ω) with w|∂Ω = g.

Remark. The assumption u ∈ C2(Ω) is certainly to strong, but we do not care about
the minimal conditions.

Proof of Theorem 1. To prove the equivalence between 1. and 2. observe that for any
u ∈ C2(Ω) and ϕ ∈ C∞

0 (Ω) we have

d

dt

∫
Ω
|∇(u+ tϕ)|2|t=0 = 2

∫
Ω
〈∇u,∇ϕ〉 = −2

∫
Ω

∆uϕ .

The last equality follows from integration by parts. Now the implication 1. ⇒ 2. is
obvious. The implication 2.⇒ 1. follows from the following important lemma.

Lemma 2 If f ∈ L1
loc(Ω) satisfies

∫
Ω fϕ = 0 for any ϕ ∈ C∞

0 (Ω), then f = 0 a.e.

Proof. Suppose that f 6≡ 0. We can assume f is positive on a set of positive measure
(otherwise we replace f by −f). Then there is a compact set K ⊂ Ω, |K| > 0 and
ε > 0 such that f ≥ ε on K.

Let Gi be a sequence of open sets such that K ⊂ Gi ⊂⊂ Ω, |Gi \K| → 0 ad i→∞.
Now take ϕi ∈ C∞

0 (Gi) with 0 ≤ ϕ ≤ 1, ϕi|K ≡ 1. Then

0 =
∫
Ω
fϕi ≥ ε|K| −

∫
Gi\K

|f | → ε|K| ,

as i→∞, which is a contradiction. The proof is complete. 2
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We are left with the proof of the equivalence with 3. under the given additional
regularity assumptions. For u = w on ∂Ω we have∫

Ω
|∇w|2 =

∫
Ω
|∇(w − u) + u|2

=
∫
Ω
|∇(w − u)|2 +

∫
Ω
|∇u|2 + 2

∫
Ω
〈∇(w − u),∇u〉

=
∫
Ω
|∇(w − u)|2 +

∫
Ω
|∇u|2 − 2

∫
Ω

(w − u)∆u. (2)

The last equality follows from the integration by parts and the fact that w − u = 0 on
∂Ω.

1.⇒ 3. ∆u = 0 and hence the last summand in (2) equals zero, so
∫
Ω |∇w|2 >

∫
Ω |∇u|2

unless w = u.

3. ⇒ 2. Take w = u + tϕ. Then
∫
Ω |∇(u + tϕ)|2 ≥

∫
Ω |∇u|2 for all t. Hence I attains

the minimum at t = 0. This implies 2.

Direct method in the calculus of variations. Riemann concluded that the Dirich-
let problem was solvable, reasoning that I is nonnegative and so must attain a minimum
value. Choosing a function u with I(u) = min I solves the problem.

Of course this “proof” of the existence of the solution is not correct. The function
I is defined on an infinite dimensional object: the space of functions and there is no
reason why the minimum of I should be attained.

The first rigorous proof of the existence of the solution of the Dirichlet problem was
obtained by a different method. Later, however, Hilbert showed that it was possible
to solve Dirichlet problem using Riemann’s strategy. This was the begining of the so
called direct method in the calculus of variations. We describe the method in a very
general setting.

Till the end of the lecture we assume that I : X → IR is a function (called functional)
defined on a Banach space X equipped with a norm ‖ · ‖. We want to emphasize
that despite the name “functional” we do not assume I is linear. Actually, in all the
interesting instances I will not be linear. We look for a condition which will guarantee
the existence of ū such that

I(ū) = inf
u∈X

I(u). (3)

Function ū as in (3) is called a minimizer of I and the problem of finding a minimizer
is called a variational problem.

We say that I is sequentially weakly lower semicontinuous (swlsc) if for every se-
quence un ⇀ u weakly convergent in X, I(u) ≤ lim infn→∞ I(un).

Recall that the weak convergence un ⇀ u in X means that for every linear contin-
uous functional e ∈ X∗ there is 〈e, un〉 → 〈e, u〉.
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We say that the functional I is coercive if ‖un‖ → ∞ implies I(un)→∞.

Reflexive spaces play a special role, particularly because of the following result.

Theorem 3 Every bounded sequence in a reflexive space contains a weakly convergent
subsequence. 2

The following result is a basic result for the direct method in the calculus of variations.

Theorem 4 If X is a reflexive Banach space and I : X → IR is swlsc and coercive
then there exists ū ∈ X such that I(ū) = infu∈X I(u).

Proof. Let un be a sequence such that I(un)→ infX I. Such a sequence will always be
called minimizing sequence.

Because of the coercivity, the sequence un is bounded in X. Since the space is
reflexive, we can substract a subsequence unk

⇀ ū weakly convergent to some ū ∈ X.
Then

I(ū) ≤ lim inf
k→∞

I(unk
) = inf

u∈X
I(u),

and hence the theorem follows. 2

In general, the most difficult condition to deal with is the swlsc condition. Note
that it does not follow from the continuity of I, which would be much easier to check.

An important class of functionals for which it is relatively easy to verify the swlsc
condition is the class of convex functionals. Recall that the functional I : X → IR is
convex if I(tu + (1 − t)v) ≤ tI(u) + (1 − t)I(v) whenever t ∈ [0, 1] and u, v ∈ X. We
say that I is strictly convex if I(tu+ (1− t)v) < tI(u) + (1− t)I(v) whenever t ∈ (0, 1)
and u 6= v.

We say that I is lower semicontinuous if the convergence in norm un → u implies
I(u) ≤ lim infn→∞ I(un).

Theorem 5 If X is a Banach space and I : X → IR is convex and lower semicontin-
uous, then I is swlsc.

Proof. In the proof we need Mazur’s lemma which states that for a weakly convergent
sequence un ⇀ u in X a sequence of convex combinations of un converges to u in the
norm (we do not assume that the space is reflexive). Let us state the lemma precisely.

Lemma 6 (Mazur’s lemma) Let X be a Banach space and let un ⇀ u be a sequence
weakly convergent in X. Then vn → u in the norm for some sequence vn of the form

vn =
N(n)∑
k=n

ankuk
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where ank ≥ 0,
∑N(n)
k=n a

n
k = 1. 2

To prove the theorem we have to prove that un ⇀ u implies I(u) ≤ lim infn→∞ I(un).
We can assume that I(un) has a limit limn→∞ I(un) = g. Let vn be a sequence as in
Mazur’s lemma. Then by lower semicontinuity and convexity we have

I(u) ≤ lim inf
n→∞

I(vn) ≤ lim inf
n→∞

N(n)∑
k=n

ankI(uk) = g.

This completes the proof of the theorem. 2

Corollary 7 If I : X → IR is a convex, lower semicontinuous and coercive functional
defined an a reflexive Banach space, then I attains minimum on X i.e. there exists
ū ∈ X such that I(ū) = infX I(u). If in addition the functional is strictly convex, then
the minimum is unique. 2

As we will see, in many cases it is very easy to verify assumptions of the above corollary.
Such an abstract approach to the existence of minimizers of variational problems was
proposed by Mazur and Schauder in 1936 on the International Congress of Mathematics
in Oslo.

Origin of the Sobolev spaces. Now we show how to apply the above direct method to
the Dirichlet problem stated at the begining of the lecture. As we know, the equivalent
problem is to find a minimizer of the functional I(u) =

∫
Ω |∇u|2 in the class of functions

with given restriction to the boundary.

Let us try to apply Corollary 7. Forst of all the functional I is defined on the space

C2
g (Ω) = w + C2

b (Ω) = {w + u : u ∈ C2
b (Ω)}

where w ∈ C2(Ω) is any functionn such that w|∂Ω = g and C2
b (Ω) is a subspace of

C2(Ω) consisting of functions vanishing at the boundary.

The space C2
b (Ω) is not even a linear! To overcome this difficulty we make the

following trick. Define J : C2
b (Ω) → IR by the formula J(u) = I(u + w). Now the

equivalent problem is to find a minimizer of J in the Banach space C2
b (Ω).

The functional J is convex and continuous. Unfortunatelly neither the space C2
b (Ω)

is reflexive nor the functional J is coercive. If n ≥ 2, then one can construct a sequence
of C2

b (Ω) functions with the supremum norm (and hence the C2 norm) tending to
infinity, but with the L2 norm of the gradient tending to zero. This proves that the
functional is not coercive. It is also easy to construct a relevant example when n = 1.
We leave details to the reader.
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The problem is caused by the fact that there is no way yo bound the C2 norm of a
function by the L2 norm of its gradient2 Hence we should change the norm in the space
in a way that everything will be governed by ‖u‖2.

Observefirst that u 7→ ‖∇u‖2 is not a norm on C2 as it anihilates alll the constant
functions, so we shall add a term to prevent this phenomenon. This suggents the norm
‖u‖1,2 = ‖u‖2 + ‖∇u‖2. Then however the space C2 equipped with the norm ‖ · ‖1,2
is not complete. Hence we have to take a completion of the C2 (or C1) functions with
respect to this norm. All that motivates the following definition.

Let Ω ⊂ IRn be an open set and 1 ≤ p <∞. Sobolev space W 1,p(Ω) is defined as a
closure of the set of C1(Ω) functions in the norm

‖u‖1,p = ‖u‖p + ‖∇u‖p .

Of course we take into account only those C1 functions for which the norm is finite.

Now we extend I by continuity to W 1,2(Ω).

W 1,2(Ω) is a Hilbert space with the scalar product

〈u, v〉 =
∫
Ω
uv +

∫
Ω
∇u · ∇v.

It is still not a correct setting for the Dirichlet problem since we seek a minimizer among
the functions with fixed restriction (called trace) to the boundary. Thus we need more
definitions.

Let W 1,p
0 (Ω) ⊂ W 1,p(Ω) be defined as the closure of the subset C∞

0 (Ω) in the Sobolev
norm. Rougly speaking W 1,p

0 (Ω) is a subspace of W 1,p(Ω) consisting of functions which
vanish on the boundary.

Fix w ∈ W 1,p(Ω) and define W 1,p
w (Ω) = w +W 1,p

0 (Ω). Thus W 1,p
w (Ω) consints of all

those functions in the Sobolev space that, in some sense, have the same trace at the
boundary as w. Note that W 1,p

w (Ω) is not linear but an affine subspace of W 1,p(Ω). The
elements of the Sobolev space need not be continuous, so it does not make sense to take
a restriction to the boundary. Thus we should understand that elements of W 1,p

w (Ω)
have the same trace on the boundary as w only in a very rough sense.

Now we can formulate the variational problem of finding minimizer of I(u) =∫
Ω |∇u|2 with given trace on the boundary in the setting of Sobolev spaces.

Let Ω ⊂ IRn be open and bounded and let w ∈ W 1,2(Ω). Find ū ∈ W 1,2
w (Ω) such that∫

Ω
|∇ū|2 = inf

u∈W 1,2
w (Ω)

∫
Ω
|∇u|2. (4)

2This suggests the question of finding norms which can be estimated by the L2 or, more generally,
by the Lp norm of the gradient. This will lead us to so called Sobolev inequalities.
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In a moment we will see that it easily follows from Corollary 7 that the above problem
has a solution. Does the minimizer of (4) solve the Laplace equation in any reasonable
sense as it was in the case of the classical Dirichlet principle? If yes, then does it have
anything to do with the classical solution to the Dirichlet problem as stated at the
begining?

The method of solving variational problems (more general than the one described
above) consists very often of two main steps. First we prove the existence of the solution
in a Sobolev space. This space is very large. To large. Then using the theory of Sobolev
spaces one can prove that this solution is in fact more regular. For example later we
will prove that the Sobolev minimizer of (4) is C∞ smooth, which will imply that ū is
actually the classical harmonic function.

Theorem 8 Let Ω ⊂ IRn be open and bounded and let w ∈ W 1,2(Ω). Then there exists
unique ū ∈ W 1,2

w (Ω) which minimizes the Dirichlet integral in the sense of (4).

Proof. In order to have functional defined on a Banach space set J(u) = I(u + w)
for u ∈ W 1,2

0 (Ω). Now the equivalent problem is to prove the existence of the unique
minimizer of the functional J on W 1,2

0 (Ω).

The functional J is strictly convex and continuous. It remains to prove that J is
coercive. We need the following lemma for p = 2.

Lemma 9 (Poincaré) Let Ω ⊂ IRn be open and bounded. For u ∈ W 1,p
0 (Ω), 1 ≤ p <

∞, we have (∫
Ω
|u|p dx

)1/p

≤ C(p,Ω)
(∫

Ω
|∇u|p dx

)1/p

.

Proof. Assume first that u ∈ C∞
0 (Ω). The general case follows by the approximation

argument. Let M > 0 be such that Ω ⊂ [−M,M ]n. Then for every x ∈ [−M,M ]n

u(x) =
∫ x1

−M
D1u(t, x2, . . . , xn) dt ≤

∫ M

−M
|D1u| dt.

By Hölder inequality,

|u(x)|p ≤ 2p−1Mp−1
∫ M

−M
|D1u|p dt,

and the assertion follows by integration with respect to x. The proof is complete. 2

The space W 1,2
0 (Ω) is equipped with a norm ‖u‖1,2 = ‖u‖2 + ‖∇u‖2. The Poincaré

inequality for p = 2 states that ‖∇u‖2 is an equivalent norm on the space W 1,2
0 (Ω).

Hence for a sequence uk ∈ W 1,2
0 (Ω), ‖uk‖1,2 →∞ if and only if ‖∇uk‖2 →∞.

Now the inequality ‖∇(u + w)‖2 ≥ ‖∇u‖2 − ‖∇w‖2 implies that if ‖u‖1,2 → ∞
in W 1,2

0 (Ω), then J(u) → ∞ which means the functional J is coercive. The proof of
Theorem 8 is complete. 2
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Remark. Observe that I(u) =
∫
Ω |∇u|2 is strictly convex and continuous on any of the

spaces W 1,p(Ω) for p ≥ 2. As we will see all the spaces W 1,p, 1 < p <∞ are reflexive.
However I is not coercive when p > 2.

Lecture 2

Sobolev spaces. For the sake of further applications (including the proof that the
minimizer obtained in Theorem 8 is C∞ smooth), we need develope the theory of
Sobolev spaces. We will see that the scope of applications of Sobolev spaces is very
wide and it goes far beyond the calculus of variations and differential equations.

Let Ω ⊂ IRn be an open set, u, v ∈ L1
loc(Ω) and let α be a multiindex. We say that

Dαu = v in the weak sense if for every ϕ ∈ C∞
0 (Ω)∫

Ω
vϕ = (−1)|α|

∫
Ω
uDαϕ.

If u ∈ C∞, then the weak and classical derivatives are equal to each other due to the
integration by parts. More generally, if P =

∑
|α|≤m aαD

α is a differential operator with
sufficently regular coefficients, and u, v ∈ L1

loc, then

Pu = v in Ω

in the weak sense if ∫
Ω
vϕ =

∫
Ω
u
∑
|α|≤m

(−1)|α|Dα(aαϕ),

for all ϕ ∈ C∞
0 (Ω). The coefficients have to be sufficently regular, in order to know

that
∑
|α|≤m(−1)|α|Dα(aαϕ) is a bounded function with the compact support, so we can

integrate it against u ∈ L1
loc.

In particular ∆u = 0 is the weak sense means
∫
Ω u∆ϕ = 0 for all ϕ ∈ C∞

0 (Ω).

It follows from Lemma 2 that Pu is unique when understood in the weak sense
(provided it exists).

During the lectures all the derivatives and the differential operators will be under-
stood in the weak sense.

Let 1 ≤ p ≤ ∞ and let m be an integer. Sobolev space Wm,p(Ω) is the set of all
functions u ∈ Lp(Ω) such that the partial derivatives of order less than or equal to m
exist in the weak sense and belong to Lp(Ω). The space is equipped with a norm

‖u‖m,p =
∑
|α|≤m

‖Dαu‖p.

The definition is of a different nature than the definition of the Sobolev space given in
the previous lecture. We will see later that the two definitions are equivalent.

Theorem 10 Wm,p(Ω) is a Banach space.
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Proof. If {uk} is a Cauchy sequence in Wm,p(Ω), then for every |α| ≤ m, Dαuk converges
in Lp(Ω) to some uα ∈ Lp(Ω) (we will write u instead of u0). Since∫

Ω
uDαϕ←

∫
Ω
ukD

αϕ = (−1)|α|
∫
Ω
Dαukϕ→ (−1)|α|

∫
Ω
uαϕ,

we conclude that uα = Dαu and that uk converges to u in the norm of Wm,p. 2

Exercise. Prove that if u ∈ Wm,p(Ω) and ϕ ∈ C∞(Ω) has bounded derivatives Dαϕ for
|α| ≤ m, then uϕ ∈ Wm,p(Ω) and Dα(uϕ) can be computed from the Leibniz formula.

If u ∈ Wm,p(IRn), 1 ≤ p < ∞ and ϕε is a standard mollifier kernel, then it follows
readily from the properties of the convolution and from the definition of weak derivative

that C∞ 3 u ∗ ϕε
ε→0−→ u in Wm,p(IRn). If ηR is a cutoff function, i.e. ηR(x) = η(x/R),

η ∈ C∞
0 (B(0, 2)), η|B(0,1) ≡ 1, 0 ≤ η ≤ 1, then one easily checks that ηRu

R→∞−→ u in
Wm,p(IRn). As we have just noticed, ηRu can be approximated, via convolution, by
smooth functions. Since (ηRu) ∗ ϕε has a compact support we arrive to the following
result.

Proposition 11 C∞
0 (IRn) is dense in Wm,p(IRn) for all 1 ≤ p <∞ and m = 0, 1, 2, . . .

2

For 1 ≤ p <∞, by Wm,p
0 (Ω) we denote the closure of C∞

0 (Ω) in the Wm,p(Ω) norm, so
Proposition 11 can be reformulated now as follows: Wm,p(IRn) = Wm,p

0 (IRn).

Very often, we will write Lp, Wm,p,... in place of Lp(IRn), Wm,p(IRn),... If in the
definition of Wm,p(Ω) the space Lp(Ω) is replaced by Lploc(Ω), then we obtain the space
Wm,p

loc (Ω). In the following result we prove that smooth functions form a dense subset
of the Sobolev space. This implies that equivalently one can define Sobolev space as
a closure of the set of smooth functions in the Sobolev norm. This establishes the
equivalence with the definition employed in the previous lecture.

Theorem 12 (Meyers–Serrin) If u ∈ Wm,p
loc (Ω), where 1 ≤ p < ∞, then to every

ε > 0 there exists v ∈ C∞(Ω) such that

1. u− v ∈ Wm,p
0 (Ω),

2. ‖u− v‖m,p < ε.

Proof. Let {Bk}∞k=1 be a locally finite covering of Ω by balls with subordinated partition
of unity {ϕk}∞k=1 such that the family {2Bk}∞k=1 also forms a locally finite covering of
Ω (by 2Bk we denote a ball with the same center as Bk and twice the radius).

Let ε > 0 be taken arbitrarily. Each of the functions uϕk (which belongs to
Wm,p

0 (Ω)) can be approximated by a smooth function with compact support contained
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in 2Bk (standard approximation by convolution). Hence there exists vk ∈ C∞
0 (2Bk)

such that
‖uϕk − vk‖m,p ≤ ε/2k.

Now the series
∑

(uϕk − vk) converges in Wm,p
0 (Ω), but we also have the pointwise

convergence
∑

(uϕk − vk) = u− v, where v =
∑
vk ∈ C∞(Ω) and hence

‖u− v‖m,p ≤
∞∑
k=1

‖uϕk − vk‖m,p ≤ ε.

2

Remark. In the previous lecture we have defined the Sobolev space as the closure of
C1(Ω) functions in the norm of W 1,p(Ω). It was however not obvious whether given
function in W 1,p(Ω) has the unique gradient. Namely if we could find a sequence
uk ∈ C1(Ω) such that uk → 0 in Lp and ∇uk → v in Lp, v 6≡ 0, then (0, v) would belong
to W 1,p(Ω) and so v would be the gradient of 0! Fortunately this will not happend:
since the Sobolev space can be defined in terms of weak derivatives we see that any
function from the Sobolev space has the unique gradient — the weak gradinent.

One can ask whetcher C∞(Ω) is a dense subset of Wm,p(Ω). In general it is not.
For example if Ω is a two dimensional disc with a radius removed, then C∞(Ω) is not
dense in W 1,p(Ω) for any p (Why?). However one can prove the following

Theorem 13 If Ω is a bounded domain whose boundary is locally a graph of a contin-
uous function, then C∞(Ω) is dense in Wm,p(Ω) for any 1 ≤ p <∞ and any m,

We will not prove it. 2

The following result is a counterpart of the Dirichlet principle in the setting of
Sobolev spaces.

Theorem 14 u is a minimizer of the Dirichlet integral (4) if and only if u is a weak
solution to the Dirichlet problem: ∆u = 0, u ∈ W 1,2

w (Ω).

Proof. ⇒. Let u be a minimizer of (4). Then u + tϕ ∈ W 1,2
w (Ω) for any ϕ ∈ C∞

0 (Ω)
and hence

0 =
d

dt
|t=0I(u+ tϕ) = 2

∫
Ω
〈∇u,∇ϕ〉 = −2

∫
Ω
u∆ϕ ,

which means ∆u = 0 in the weak sense.

⇐. Since by Theorem 8 the minimizer exists we get that one of the weak solutions
is the minimizer. Now it remains to prove that the solution is unique. Assume that
u1, u2 ∈ W 1,2

w (Ω) are weak solutions to ∆u = 0. Then∫
Ω
∇u1 · ∇ϕ = 0,

∫
Ω
∇u2 · ∇ϕ = 0 ,

11



for all ϕ ∈ C∞
0 (Ω), and so∫

Ω
(∇u1 −∇u2) · ∇ϕ = 0 ∀ϕ ∈ C∞

0 (Ω) .

By the approximation argument it is true also for all ϕ ∈ W 1,2
0 (Ω). Taking ϕ = u1−u2

w conclude ∫
Ω
|∇(u1 − u2)|2 = 0 .

Hence by Poincaré inequality (Lemma 9), u1 = u2. 2

For the sake of simplicity we will be concerned with Sobolev spaces Wm,p(Ω) for
m = 1 only. However, we want to point out that most of the results have their
counterparts for higher order derivatives.

It was essential for the direct method that the functional was defined on a reflexive
space. In this regard, the following result is very important.

Theorem 15 If 1 < p <∞, then the space W 1,p(Ω) is reflexive.

Proof. Closed subspace of a reflexive space is reflexive. Thus it suffices to find an
isomorphism between W 1,p(Ω) and a closed subspace of Lp(Ω, IRn+1). The isomorphism
is given by the mapping Φ(u) = (u,∇u). The proof is complete. 2

ACL characterization. The definition of the Sobolev space is quite abstract and it is
not obvious how to verify whether given function u ∈ Lp(Ω) belongs to W 1,p(Ω). Below
we provide a characterization of the Sobolev spaces which goes back to Nikodym. The
characterization is very convenient when checking whether given function belongs to
the Sobolev space.

First we need recall the definition of the absolutely continuous function.

We say that a continuous function u defined on an interval [a, b] is absolutely con-
tinuous if to every ε > 0 there is δ > 0 such that the following implication holds:
If I1, . . . , Ik are pairwise disjoint segments contained in [a, b] with

∑k
i=1 |Ii| < δ, then∑k

i=1 |u(Ii)| < ε.

We will denote the class of absolutely continuous functions on [a, b] by AC[a, b].

It is easy to see that the function u(x) = c+
∫ x
a h(t) dt, where h ∈ L1(a, b) and c is

a constant is absolutely continuous. As it follows from the following lemma these are
the only absolutely continuous functions.

Lemma 16 If u ∈ AC[a, b], then u′ exists a.e., u′ ∈ L1(a, b) and u(x) = u(a) +∫ x
a u

′(t) dt for all x ∈ [a, b]. 2

We skip the proof. Also we will not prove the following integration by parts formula.
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Lemma 17 If u, v ∈ AC[a, b], then the formula for integration by parts holds∫ b

a
u(x)v′(x) dx = uv|ba −

∫ b

a
u′(x)v(x) dx.

2

If U ⊂ IR is an open set, then we say that u ∈ AC(U) if u ∈ AC[a, b], whenever
[a, b] ⊂ U .

Let Ω ⊂ IRn be an open set. We say that u ∈ ACL(Ω) (absolutely continuous on
lines) if the function u is Borel measurable and absolutely continuous on almost all
lines paralell to coordinate axes. Since absolutely continous functions are differentiable
a.e., u ∈ ACL(Ω) has partial derivatives a.e. and hence the classical gradient ∇u is
defined a.e. Now we say that u ∈ ACLp(Ω) if u ∈ Lp(Ω)∩ACL(Ω) and |∇u| ∈ Lp(Ω).
The following result goes back to Nikodym.

Theorem 18 (ACL characterization) W 1,p(Ω) = ACLp(Ω), 1 ≤ p ≤ ∞. 2

Since maybe it is not evident how to understand the theorem we shall comment it
now. The theorem asserts that each ACLp(Ω) function belongs to W 1,p(Ω) and that
the classical partial derivatives (which exist a.e. for elements of ACLp(Ω)) are equal
to weak partial derivatives. On the other hand every element u ∈ W 1,p(Ω) can be
alternated on a set of measure zero in a way that the resulting function belongs to
ACLp(Ω).

The proof of the inclusion ACLp(Ω) ⊂ W 1,p(Ω) is easy. It follows from the fact
that integration by parts holds for the absolutely continuous functions, from the Fubini
theorem, and from the definition of the weak derivative. The opposite implication is
more involved and we will not prove it.

Example. The radial projection mapping

u0(x) =
x

|x|
: Bn(0, 1)→ Sn−1(0, 1) ⊂ IRn,

is discontinuous at x = 0. The coordinate functions xi/|x| of u0 are absolutely contin-
uous on almost all lines. Moreover

∂

∂xj

(
xi
|x|

)
=
δij|x| − xixj/|x|

|x|2
∈ Lp(Bn(0, 1)),

for all 1 ≤ p < n. Hence by the ACL characterization u0 ∈ W 1,p(Bn, IRn) for all
1 ≤ p < n. Here δij is the Kronecker symbol i.e., δij = 1 if i = j and δij = 0 if i 6= j. 2

The following four results are direct consequences on the ACL characterization.
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Corollary 19 Functions in the space W 1,∞(Ω) are locally Lipschitz continuous. If in
addition Ω is a bounded Lipschitz domain (i.e. ∂Ω is locally a graph of a Lipschitz
function), then W 1,∞(Ω) = Lip (Ω). 2

Corollary 20 If u ∈ W 1,p(Ω), where Ω is connected and ∇u = 0 a.e., then u is
constant. 2

Corollary 21 If u ∈ W 1,p(Ω) is constant in a measurable set E ⊂ Ω, then ∇u = 0
a.e. in E. 2

Corollary 22 Let u ∈ W 1,p(Ω), 1 ≤ p ≤ ∞. Then u± ∈ W 1,p(Ω), where u+ =
max{u, 0}, u− = min{u, 0} and

∇u+(x) =

{
∇u(x) if u(x) > 0 ,

0 if u(x) ≤ 0 ,

almost everywhere. Similar formula holds for ∇u−. 2

Another characterization of the Sobolev space. In the sequel we will need the
following elegant characterization of the Sobolev space.

Theorem 23 Let 1 < p < ∞ and suppose that Ω ⊂ IRn is an open set. Then u ∈
W 1,p

loc (Ω) if and only if u ∈ Lploc(Ω) and for every Ω′ ⊂⊂ Ω there is a constant CΩ′ such
that

‖u(·+ h)− u(·)‖Lp(Ω′) ≤ CΩ′|h|

provided |h| < min{1
2
dist (Ω′, ∂Ω), 1}.

Proof. 1.⇒ 2. Assume first that u ∈ C∞(Ω). Then we have

u(x+ h)− u(x)

|h|
=

1

|h|

∫ |h|

0
∇u

(
x+ t

h

|h|

)
· h
|h|

dt.

Hence applying Hölder’s inequality and integrating over Ω′ we get

|h|−p
∫
Ω′
|u(x+ h)− u(x)|p dx ≤ 1

|h|

∫ |h|

0

∫
Ω′

∣∣∣∣∣∇u
(
x+ t

h

|h|

)∣∣∣∣∣
p

dx dt ≤
∫
V
|∇u(x)|p dx,

for some V with Ω′ ⊂⊂ V ⊂⊂ Ω that does not depend on h. Now by Meyers–Serrin’s
theorem the inequality holds for any u ∈ W 1,p

loc (Ω).

2. ⇒ 1. Dentote by ek, one of the coordinate directions. Let hi → 0. Then the
sequence (u(x+ hiek)− u(x))/hi is bounded in Lp(Ω′). By the reflexivity of Lp(Ω′) we
can substract a weakly convergent subsequence to some uk ∈ Lp(Ω′). It remais to prove
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that uk coincides with the distributional derivative ∂u/∂xk. To this end note that for
every ϕ ∈ C∞

0 (Ω′)

∫
Ω′
ukϕdx = lim

i→∞

∫
Ω′

(
u(x+ hiek)− u(x)

hi

)
ϕ(x) dx

= lim
i→∞

∫
Ω′
u(x)

(
ϕ(x− hiek)− ϕ(x)

hi

)
dx

= −
∫
Ω′
u
∂ϕ

∂xk
dx. 2

As we have seen, the difference quotient is weakly convergent in Lp to the distributional
partial deriative. In fact one can prove the strong convergence in Lp. Namely we have.

Proposition 24 If u ∈ W 1,p
loc (Ω), 1 < p <∞, then

u(x+ hek)− u(x)

h
h→0−→ ∂u

∂xk

in Lp(Ω′) for every Ω′ ⊂⊂ Ω.

We leave the proof as an exercise. 2

Poincaré inequality and Riesz potentials. The lemma below provides a very
powerful integral estimate for Sobolev functions.

Lemma 25 Let B ⊂ IRn be a ball. Then for every u ∈ W 1,p(B), 1 ≤ p ≤ ∞,

|u(x)− uB| ≤ C(n)
∫
B

|∇u(z)|
|x− z|n−1

dz a.e. (5)

Proof. First we prove the inequality for u ∈ C∞(B). Fix x ∈ B. For y ∈ B, y 6= x set

y = x+ t
y − x
|y − x|

= x+ tz, z ∈ Sn−1

and let δ(z) = max{t > 0 : x+ tz ∈ B}. We have

|u(x)− u(y)| ≤
∫ |y−x|

0

∣∣∣∣∣∇u(x+ s
y − x
|y − x|

)

∣∣∣∣∣ ds ≤
∫ δ(z)

0
|∇u(x+ sz)| ds.

Denoting by dz the surface measure on Sn−1 we get

|u(x)− uB| ≤ |B|−1
∫
B
|u(x)− u(y)| dy

(polar coordinates)
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= |B|−1
∫
Sn−1

∫ δ(z)

0
tn−1|u(x)− u(x+ tz)| dt dz

≤ |B|−1
∫
Sn−1

∫ δ(z)

0
tn−1

∫ δ(z)

0
|∇u(x+ sz)| ds dt dz

≤ |B|−1
∫
Sn−1

∫ 2r

0
tn−1 dt

∫ δ(z)

0
|∇u(x+ sz)| ds dz

= C(n)
∫
Sn−1

∫ δ(z)

0

|∇u(x+ sz)|
sn−1

sn−1 ds dz

(polar coordinates)

= C(n)
∫
B

|∇u(y)|
|x− y|n−1

dy.

The case of general u ∈ W 1,p(B) follows by approximating it by C∞ smooth functions.
to this end we have to know that if uk → u in W 1,p, then after substracting a subse-
quence, IB1 |∇uk| → IB1 |∇u| a.e. where IB1 g(x) =

∫
B g(z)|x − z|1−n dz. This will follow

from Lemma 27 below.

To get further estimates we introduce Riesz potentials. The Riesz potential is an
integral operator Iα, 0 < α < n, defined by the formula

Iαg(x) =
∫
IRn

g(z)

|x− z|n−α
dz.

If Ω ⊂ IRn, then we set

IΩ
α g(x) =

∫
Ω

g(z)

|x− z|n−α
dz.

We start with an elementary, but very useful observation which will be frequently
employed in the sequel.

Lemma 26 If E ⊂ IRn is a measurable set of finite measure, then∫
E

dz

|x− z|n−1
≤ C(n)|E|1/n ,

for all x ∈ IRn.

Proof. Let B = B(x, r) be a ball with |B| = |E|. Then it easily followins that∫
E

dz

|x− z|n−1
≤
∫
B

dz

|x− z|n−1
= C(n)r = C ′(n)|E|1/n .

The proof is complete. 2

Lemma 27 If |Ω| <∞, then for 1 ≤ p <∞ we have

‖IΩ
1 g‖Lp(Ω) ≤ C(n, p)|Ω|1/n‖g‖Lp(Ω).
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Proof. It followins from the provious lemma that∫
Ω

dz

|x− z|n−1
≤ C(n)|Ω|1/n .

Now if p > 1, then Hölder’s inequality with respect to the measure |x− z|1−ndz implies

∫
Ω

|g(z)|
|x− z|n−1

dz ≤
(∫

Ω

|g(z)|p

|x− z|n−1
dz

)1/p (∫
Ω

dz

|x− z|n−1
dz

)1−1/p

≤ C|Ω|
p−1
np

(∫
Ω

|g(z)|p

|x− z|n−1
dz

)1/p

.

If p = 1, then the above inequality is obvious. Now we can conclude the proof using
Fubini’s theorem. ∫

Ω
|IΩ

1 g(x)|p dx ≤ C|Ω|
p−1

n

∫
Ω

∫
Ω

|g(z)|p

|x− z|n−1
dz dx

≤ C|Ω|
p−1

n |Ω|
1
n

∫
Ω
|g(z)|p dz.

This completes the proof of Lemma 27 and hence that for Lemma 25. 2

Remark. The proof of Lemma 25 easily extends to the case of an arbitrary bounded,
convex domain.

As a direct consequence of Lemma 25 and Lemma 27 we obtain

Corollary 28 If u ∈ W 1,p(B), where B is a ball of radius r, and 1 ≤ p <∞, then(∫
B
|u− uB|p dx

)1/p

≤ C(n, p)r
(∫

B
|∇u|p dx

)1/p

.

Lecture 3

Bi-Lipschitz change of variables. We say that the mapping T : Ω→ IRn, Ω ⊂ IRn

is bi-Lipschitz if there is a constant C ≥ 1 such that

C−1|x− y| ≤ |T (x)− T (y)| ≤ C|x− y| ,

for all x, y ∈ Ω. Obviously bi-Lipschitz mapping is a homeomorphism.

An important property of Lipschitz functions is that they are differentiable a.e. In
particular bi-Lipschitz mappings are differentiable a.e. Namely we have

Theorem 29 (Rademacher) If u is a Lipschitz function defined in an open subset
of IRn, then u is differentiable a.e.
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The following result is a generalization of the classical change of variables formula to
the case of bi-Lipschitz transformations.

Theorem 30 Let T : Ω → IRn, Ω ⊂ IRn, be a bi-Lipschitz homeomorphism and let
f : T (Ω)→ IR be measurable. Then∫

Ω
(f ◦ T )|JT | =

∫
T (Ω)

f ,

in the sense that if one of the integrals exists then the second one exists and the integrals
are equal one to another.

We will not prove it. 2

As a consequence we obtain that the Sobolev space W 1,p is invariant under the
bi-Lipschitz change of variables. Namely we have

Theorem 31 Let T : Ω1 → Ω2, be a bi-Lipschitz homeomorphism between domains
Ω2,Ω2 ⊂ IRn. Then u ∈ W 1,p(Ω2), 1 ≤ p ≤ ∞ if and only if v = u ◦T ∈ W 1,p(Ω1), and

Dv(x) = Du(T (x)) ·DT (x) (6)

for almost all x ∈ Ω1. Moreover the transformation T ∗ : W 1,p(Ω2) → W 1,p(Ω1) given
by T ∗u = u ◦ T is an isomorphism of Sobolev spaces.

Proof. Assume first that u is locally Lipschitz. Then (6) is obvious.

Since T is Lipschitz, we have |DT | ≤ C, so the chain rule (6) implies

|Dv(x)|p ≤ C|Du(T (x))|p.

The fact that T is bi-Lipschitz implies |JT | > C and hence

|Dv(x)|p ≤ C|Du(T (x))|p|JT (x)|

Now applying the change of variables formula we conclude∫
Ω1

|Dv|p ≤ C
∫
Ω1

|Du(T (x))|p|JT (x)| =
∫
Ω2

|Du|p.

By a similar argument
∫
Ω1
|v|p ≤ C

∫
Ω2
|u|p, and hence ‖T ∗u‖W 1,p(Ω1) ≤ C‖u‖W 1,p(Ω2).

We proved the inequality when u is locally Lipschitz. By the density argument (Theo-
rem 12 and Corollary 19) it is true for any u ∈ W 1,p(Ω2).

Applying the above argument to T−1 we conclude that T ∗ is an isomorphism of
Sobolev spaces. Finally the density argument proves (6) for any u ∈ W 1,p(Ω2). 2
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The change of variables transformation shows that one can define Sobolev spaces
on manifolds. We will come back to this question later on.

Sobolev embedding theorem. By the definition the function u ∈ W 1,p(Ω) is only
Lp integrable. However as we will see, we can say much more about the regularity of u.
We start with the case 1 ≤ p < n. Later we will see that in the case p > n the function
is Hölder continuous.

Theorem 32 (Sobolev embedding theorem) Let 1 ≤ p < n and p∗ = np/(n− p).
Then for u ∈ W 1,p(IRn) we have(∫

IRn
|u(x)|p∗ dx

)1/p∗

≤ C(n, p)
(∫

IRn
|∇u(x)|p dx

)1/p

. (7)

Proof. Step 1. p = 1. This is the crucial step in the proof. As we will see later, the
general case in which 1 ≤ p < n easily follows from the case in which p = 1.

By the density argument we can assume that u ∈ C∞
0 (IRn). We have

|u(x)| ≤
∫ x1

−∞
|D1u(t1, x2, . . . , xn)| dt1 ≤

∫ ∞

−∞
|D1u(t1, x2, . . . , xn)| dt1.

Here by Di we denote the partial derivative with respect to i-th coordinate. Analogous
inequalities hold with x1 replaced by x2, . . . , xn. Hence

|u(x)|
n

n−1 ≤
n∏
i=1

(∫ ∞

−∞
|Diu| dti

) 1
n−1

.

Now we integrate both sides with respect to x1 ∈ IR. Note that exactly one integral in
the product on the right hand side does not depend on x1. Applying Hölder’s inequality
to the remaining n− 1 integrals yields

∫ ∞

−∞
|u(x)|

n
n−1 dx1 ≤

(∫ ∞

−∞
|D1u| dt1

) 1
n−1

n∏
i=2

(∫ ∞

−∞

∫ ∞

−∞
|Diu| dti dx1

) 1
n−1

.

Next, we integrate both sides with respect to x2 ∈ IR and apply Hölder’s inequality
in a similar way as above. This leads to an inequality which we then integrate with
respect to x3 ∈ IR etc. In the end, we obtain the inequality

∫
IRn
|u(x)|

n
n−1 dx ≤

n∏
i=1

(∫
IRn
|Diu| dx

) 1
n−1

,

which readily implies (7) when p = 1.

Step 2. General case. Let u ∈ C∞
0 (IRn). Define a nonnegative function f of class C1

by
f

n
n−1 = |u|

np
n−p .
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Applying (7) with p = 1 to f yields(∫
|u|

np
n−p

)n−1
n

=
(∫

f
n

n−1

)n−1
n

≤ C
∫
|∇f |.

Since

|∇f | = p(n− 1)

n− p
|u|

n(p−1)
n−p |∇u|,

the theorem easily follows by Hölder’s inequality (with suitable exponents) applied to∫
|∇f |. The proof is complete. 2

Extension operator. Any bounded linear operator E : W 1,p(Ω) → W 1,p(IRn) such
that Eu|Ω = u for u ∈ W 1,p(Ω) is called an extension operator.

We say that Ω ⊂ IRn is a Lipschitz domain if Ω is bounded and the boundary of Ω
is localy a graph of a Lipschitz function.

Theorem 33 Let Ω ⊂ IRn be a bounded Lipschitz domain and 1 ≤ p ≤ ∞. Then there
exists an extension operator E : W 1,p(Ω)→ W 1,p(IRn).

Proof. Let IRn
+ = {(x1, x

′) : x1 > 0} be a halfspace. Then we define an exten-
sion operator E : W 1,p(IRn

+) → W 1,p(IRn) be reflection i.e. Eu = u on IRn
+ and

Eu(x1, x
′) = u(−x1, x

′) for x1 < 0. By the ACL characterization of the Sobolev space
‖Eu‖W 1,p(IRn) ≤ C‖u‖W 1,p(IRn

+) for all u ∈ W 1,p(IRn
+).

Now if Ω is a bounded Lipschitz domain then we use a partition of unity to local-
ize u near the boundary, next we flat small parts of the boundary using bi-Lipschitz
homeomorphisms and we extend the localizied pieces of function across the flat bound-
aries using the reflection described above. Finally we come back using the inverse
bi-Lipschitz homeomorphisms. This is only a sketch of the proof. We leave details to
the reader. 2

We will use the above extension operator to prove a general Sobolev inequality.

Let Ω ⊂ IRn be a bounded Lipschitz domain and let E : W 1,p(Ω) → W 1,p(IRn) be
an extension operator. Then invoking Theorem 32 we get for 1 ≤ p < n(∫

Ω
|u|p∗ dx

)1/p∗

≤
(∫

IRn
|Eu|p∗ dx

)1/p∗

≤ C
(∫

IRn
|∇(Eu)|p dx

)1/p

≤ C

((∫
Ω
|∇u|p dx

)1/p

+
(∫

Ω
|u|p dx

)1/p
)
.

Hence we proved the following result

Proposition 34 If Ω ⊂ IRn is a bounded Lipschitz domain and 1 ≤ p < n, then
W 1,p(Ω) ⊂ Lp

∗
(Ω). Moreover

‖u‖Lp∗ (Ω) ≤ C(‖u‖Lp(Ω) + ‖∇u‖Lp(Ω)) .
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Compactness. One of the most important results in the theory of Sobolev spaces is
the following theorem.

Theorem 35 (Rellich–Kondrachov) Let Ω be a bounded Lipschitz domain. The the
embedding

W 1,p(Ω) ⊂ Lq(Ω)

is compact, if q < p∗ and 1 ≤ p < n or q <∞ and n ≤ p <∞.

We will not prove the theorem. 2

We remark that the embedding W 1,p(Ω) ⊂ Lp
∗
(Ω), 1 ≤ p < n is not compact.

As an application of the theorem we prove the following

Theorem 36 (Sobolev–Poincaré inequality) Let Ω ⊂ IRn be a bounded Lipschitz
domain and 1 ≤ p < n. Then for every u ∈ W 1,p(Ω)(∫

Ω
|u− uΩ|p

∗
dx
)1/p∗

≤ C(Ω, p)
(∫

Ω
|∇u|p dx

)1/p

,

where p∗ = np/(n− p).

Proof. Applying Proposition 34 to u− uΩ we see that it remains to prove that

‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω),

for all u ∈ W 1,p(Ω) with
∫
Ω u = 0.

Suppose this is not true. Then there is a sequence uk ∈ W 1,p(Ω), such that∫
Ω uk dx = 0 and ∫

Ω
|uk|p dx ≥ k

∫
Ω
|∇uk|p dx. (8)

Multiplying uk by a suitable constant we may assume in addition that
∫
Ω |uk|p = 1.

Since the embedding W 1,p(Ω) ⊂ Lp(Ω) is compact we may substract a subsequence uki

such that uki
→ u in Lp(Ω). Hence

∫
Ω |u|p = 1 ad

∫
Ω u = 0. Inequality (8) implies that

∇uki
→ 0 in Lp(Ω). Hence uki

is a Cauchy sequence in W 1,p(Ω) and thus u ∈ W 1,p(Ω),
∇u = 0 a.e. which means u is constant. This is a contradiction because

∫
Ω u = 0 and

‖u‖p = 1. 2

Almost the same argument implies the following result.

Proposition 37 Let Ω ⊂ IRn be a bounded Lipschitz domain and let E ⊂ Ω, |E| > 0,
1 ≤ p < n. Then (∫

Ω
|u|p∗ dx

)1/p∗

≤ C(Ω, E, p)
(∫

Ω
|∇u|p dx

)1/p

for all u ∈ W 1,p(Ω) with u|E ≡ 0.
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The argument employed in the proof of Theorem 36 establishes also the following

Theorem 38 Let Ω ⊂ IRn be a bounded Lipschitz domain and 1 ≤ p <∞. Then(∫
Ω
|u− uΩ|p dx

)1/p

≤ C(n, p)
(∫

Ω
|∇u|p dx

)1/p

for all u ∈ W 1,p(Ω).

Later we will need the following special case.

Corollary 39 Let 1 ≤ p < ∞, and n ≥ 2. Then for any u ∈ W 1,p(B(2r) \ B(r)) we
have (∫

B(2r)\B(r)
|u− uB(2r)\B(r)|p dx

)1/p

≤ C(n, p)r

(∫
B(2r)\B(r)

|∇u|p dx
)1/p

.

Proof. The assumption n ≥ 2 is to guarantee that the annulus B(2r)\B(r) is connected.
It remains to prove that the constant in the inequality is proportional to the radius of
the ball. This easily follows from the scaling argument: If the radius of the ball is one,
then the inequality holds with some constant C = C(n, p). If the radius is arbitrary,
then by a linear change of variables we can reduce it to the case in which r = 1. 2

Hölder continuity. If p ≥ n and Ω is a bounded domain with the Lipschitz boundary,
then u ∈ W 1,p(Ω) belongs to Sobolev spaces for all exponents less than n. Hence the
Sobolev embedding theorem implies that u is integrable with aby exponent less than
∞. As we will see a much better result holds. Namely we will prove that if p > n, then
the Sobolev functions are Hölder continuous.

Theorem 40 If u ∈ W 1,p(B), n < p <∞, then u ∈ C0,1−n/p(B). Moreover

|u(x)− u(y)| ≤ C(n, p)|x− y|1−n/p
(∫

B
|∇u(z)|p dz

)1/p

.

Proof. Let E : W 1,p(B)→ W 1,p(2B) be an extension operator such that
∫
2B |∇(Eu)|p ≤

C
∫
B |∇u|p (show that such an operator exists). Denote ũ = Eu for the simplicity of

notation. Then for any ball B̃ ⊂ 2B of radius r we have

|ũ(x)− ũ
B̃
| ≤ C(n)

∫
B̃

|∇ũ(z)|
|x− z|n−1

dz

≤ C(n)
(∫

B̃
|∇ũ(z)|p dz

)1/p
(∫

B̃

dz

|x− z|(n−1)p/(p−1)

)1−1/p

≤ C(n, p)r1−n
p

(∫
B̃
|∇ũ(z)|p dz

)1/p

≤ C ′(n, p)r1−n/p
(∫

B
|∇u(z)|p dz

)1/p

.
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Now let x, y ∈ B and let B̃ ⊂ 2B be a ball such that x, y ∈ B̃, diam B̃ ≈ |x− y|. The
inequality

|u(x)− u(y)| ≤ |u(x)− u
B̃
|+ |u(y)− u

B̃
|

together with the previous inequlity yields the result. 2

This result and the extension theorem imply the folowing corollary.

Corollary 41 Let Ω ⊂ IRn be a bounded domain with the Lipschitz boundary. Then
for n < p <∞ W 1,p(Ω) ⊂ C0,1−n/p(Ω).

Corollary 42 Let 1 ≤ p <∞. If u ∈ W k,p(Ω) for all k = 1, 2, . . ., then u ∈ C∞(Ω).

Proof. If p > n, then W 1,p ⊂ C0,α, so W k,p ⊂ Ck−1,α and the claim follows. Let p < n.
Take k such that kp < n, but (k + 1)p > n. Then W 1,p ⊂ Lnp/(n−p), so by induction

W k+1,p ⊂ W k,np/(n−p) ⊂ W k−1,np/(n−2p) ⊂ . . . ⊂ W 1,np/(n−kp) ⊂ C0,α,

because np/(n− kp) > n. Hence Wm,p ⊂ Cm−k−1,α and then the claim follows. 2

What does happen if u ∈ W 1,n(Ω), where Ω ⊂ IRn is bounded Lipschiz domain?
As we have already mentioned u is integrable with any exponent strictly less than ∞.
However u need not be bounded. Moreover one can construct u ∈ W 1,n(IRn) which is
essentially discontinuous everywhere.

Exercise. Show that log | log |x|| belongs to the Sobolev space W 1,n in a neighborhood
of 0. Use this function to constract u ∈ W 1,n(IRn) such that its essential supremum on
every ball is +∞ and its essential infimum on every ball is −∞.

More information about the integrability of u ∈ W 1,n(Ω) is provided by the following
result.

Theorem 43 (Trudinger) Let Ω ⊂ IRn be a bounded Lipschitz domain. Then there
exist constants C1, C2 depending on n, p and Ω only such that

∫
Ω

exp

(
|u− uΩ|

C1‖∇u‖Ln(Ω)

) n
n−1

≤ C2 .

for any u ∈ W 1,n(Ω).

We will not provide a proof. 2

Traces. Let Ω ⊂ IRn be a bounded Lipschitz domain. We want to restrict the function
u ∈ W 1,p(Ω) to the boundary of Ω. If p > n, then the function u is Hölder continuous
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and such a restriction makes sense. However if p ≤ n, then the function can be essen-
tially discontinuous everywhere and the restriction makes no sense when understood in
the usual way.

Thus in the case p ≤ n we want to describe the trace in the following way. Find
a function space defined on the boundary X(∂Ω) with a norm ‖ · ‖X such that the
operator of restriction Tu = u|∂Ω defined for u ∈ C∞(Ω) is continuous in the sense that
it satisfies the estimate ‖Tu‖X ≤ C‖u‖W 1,p(Ω). We will assume that Ω is a bounded
Lipschitz domain. Observe that in this case the space C∞(Ω) is dense in W 1,p(Ω)
(Theorem 13) and hence T extends in a unique way to an operator defined on W 1,p(Ω).

Theorem 44 Let Ω be a bounded Lipschitz domain, and 1 ≤ p < n. Then there exists
a unique bounded operator

Tr : W 1,p(Ω)→ Lp(n−1)/(n−p)(∂Ω),

such that Tr(u) = u|∂Ω, for all u ∈ C∞(Ω).

Proof. Using the partition of unity and flatting the boundary argument, it suffices to
assume that Ω = Qn = Qn−1 × [0, 1], u ∈ C∞(Ω), suppu ⊂ Qn−1 × [0, 1/2), and prove
the estimate

‖u‖Lq(Qn−1) ≤ C
(∫

Ω
|∇u|p dx

)1/p

,

where q = p(n− 1)/(n− p), and Qn−1 = Qn−1 × {0}.

In Qn we use coordinates (x′, t), where x′ ∈ Qn−1, t ∈ [0, 1]. Let w = |u|q. We have

w(x′, 0) = −
∫ 1

0

∂w

∂t
(x′, t) dt,

and hence

|u(x′, 0)|q ≤ q
∫ 1

0
|u(x′, t)|q−1|∂u

∂t
(x′, t)| dt.

Now we integrate both sides with respect to x′ ∈ Qn−1. If p = 1, then q = 1 and the
theorem follows. If p > 1, we use Hölder’s inequality which yields

∫
Qn−1
|u(x′, 0)|

p(n−1)
n−p dx′ ≤ p(n− 1)

n− p

(∫
Qn−1

∫ 1

0
|u(x′, t)|

np
n−p , dt dx′

)1−1/p

×
(∫

Qn−1

∫ 1

0

∣∣∣∣∂u∂t (x′, t)
∣∣∣∣p dt dx′

)1/p

.

Now we use Sobolev embedding theorem (Proposition 37) to estimate the first integral
on the right-hand side and the theorem follows. 2

Lecture 4

24



This lecture will be devoted to study of the pointwise and geometric properties of
Sobolev functions. In the second part of the lecture we will show some applications to
conformal mappings.

Lebesgue points. One of the most important results of the theory of the Lebesgue
integral is the following Lebesgue differentiation theorem.

Theorem 45 (Lebesgue) If u ∈ L1
loc(IR

n), then

u(x) = lim
r→0

∫
B(x,r)

u(z) dz a.e. (9)

Before we proceed to the proof we have to recall some properties of the maximal
function. The Hardy–Littlewood maximal function of g ∈ L1

loc(IR
n) is defined by the

formula.
Mg(x) = sup

r>0

∫
B(x,r)

|g(z)| dz.

The following theorem is due to Hardy and Littlewood.

Theorem 46 (Hardy–Littlewood) If g ∈ L1(IRn), then

|{x ∈ IRn : Mg(x) > t}| ≤ C(n)t−1
∫
IRn
|g(z)| dz. (10)

If g ∈ Lp(IRn), 1 < p ≤ ∞, then

‖Mg‖Lp(IRn) ≤ C(n, p)‖g‖Lp(IRn) . (11)

If u ∈ L1(IRn), then Chebyschev’s inequality implies

|{|u| > t}|t ≤
∫
IRn
|u|.

Hence (10) is weaker than (11) when p = 1. Actually inequality (11) fails for p = 1.

Inequality (10) is called weak type estimate for the maximal function.

Sketch of the proof of Theorem 46. We will prove inequality (10) only. The main
new idea employed in the proof is an application of the following version of the Vitali
covering lemma.

Theorem 47 (5r-covering lemma.) Let B be a family of balls in a metric space (X, d)
with sup{diamB : B ∈ B} <∞. Then there is a pairwise disjoint subcollection B′ ⊂ B
such that ⋃

B∈B
B ⊂

⋃
B∈B′

5B
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If (X, d) is separable, then B′ is countable and we can represent B′ as a sequence
B′ = {Bi}∞i=1, and so ⋃

B∈B
B ⊂

∞⋃
i=1

5Bi.

We will not prove it. 2

Let g ∈ L1(IRn). Fix t > 0. Then for every x ∈ {Mg > t} there is rx > 0 such that∫
B(x,rx)

|g| > t|B(x, rx)| .

The family of balls {B(x, rx)}x∈{Mg>t} forms a covering of the set {Mg > t}. Since the
radii of the balls are uniformly bounded we can apply the 5r-covering lemma. Thus
we find a sequence {B(xi, rxi

)}∞i=1 of pairwise disjoint balls such that {Mg > t} ⊂⋃∞
i=1B(xi, 5rxi

). Hence

|{Mg > t}| ≤
∞∑
i=1

|B(xi, 5rxi
)|

= C
∞∑
i=1

|B(xi, rxi
)|

≤ C

t

∞∑
i=1

∫
B(xi,rxi )

|g|

≤ C

t

∫
IRn
|g| .

The proof of (10) is complete. 2

Proof of Theorem 45. Define

Φ(u, x) = lim sup
r→0

∫
B(x,r)

u(z) dz − lim inf
r→0

∫
B(x,r)

u(z) dz.

Then Φ(u, x) ≤ 2Mu(x). Moreover Φ(u − h, x) = Φ(u, x), whenever h is continuous.
Choosing h with ‖u− h‖L1 < ε yields

|{Φ(u, x) > t}| = |{Φ(u− h, x) > t}| ≤ |{M(u− h, x) > t/2}| ≤ Cε

t
.

Since ε > 0 was choosen arbitrarily we conclude that Φ(u, x) = 0 a.e. which means,
the limit on the right hand side of (9) exists a.e. Now using similar arguments as above
it is not difficult to prove that the limit equals u a.e. We leave details to the reader. 2

Elements of the space L1
loc are equivalence classes of functions which are equal except

a set of measure zero. It will be however convenient to choose a particular representative
in each class.

26



It follows from the Lebesgue theorem that the function ũ defined everywhere by the
formula

ũ(x) = lim sup
r→0

∫
B(x,r)

u(z) dz (12)

satisfies ũ = u a.e. and hence ũ is a Borel measurable representative of u ∈ L1
loc.

We say that x ∈ Ω is a p-Lebesgue point of u ∈ L1
loc if

(∫
B(x,r)

|u(x)− ũ(x)|p dz
)1/p

→ 0 as r → 0.

We will also say Lebesgue point instead of 1-Lebesgue point.

Roughly speaking the p-Lebesgue points of the function are those points where the
function behaves nicely.

Theorem 48 Given u ∈ Lploc, 1 ≤ p < ∞, then almost all points are the p-Lebesgue
points of u.

Proof. By the Lebesgue theorem and the fact that the set of rational numbers is
countable we conclude that for almost all x and all c ∈ Q the averages (

∫
B(x,ε)|u−c|p)1/p

converge to |u(x) − c| as ε → 0. Then by the density it is true for aby c ∈ IR and in
particular it is true for c = ũ(x). The proof is complete. 2

As an application of the above result we will prove the following result.

Theorem 49 (Calderón) If u ∈ W 1,p(Ω), where Ω ⊂ IRn, n < p ≤ ∞, then u is
differentiable a.e.

Proof. We can assume that p <∞. Fix x0 ∈ Ω and set v(x) = u(x)−∇u(x0)(x− x0).
Obviously v ∈ W 1,p(Ω). If x is sufficiently close to x0, then B = B(x0, 2|x − x0|) ⊂ Ω
and hence Theorem 40 yields

|u(x)−u(x0)−∇u(x0)(x−x0)| = |v(x)−v(x0)| ≤ C|x−x0|
(∫

B
|∇u(z)−∇u(x0)|p dz

)1/p

.

This implies that u is differentiable at x0 whenever x0 is a p-Lebesgue point of u. The
proof is compliete. 2

Observe that by the ACL characterization Lipschitz functions locally belong to
W 1,∞ and hence as a corollary we get the classical Rademacher theorem.

Corollary 50 (Rademacher) Lipschitz functions are differentiable a.e. 2

There is also another neat generalization of Rademacher’s theorem due to Stepanov.
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Theorem 51 (Stepanov) Let u be a function defined in an open set Ω ⊂ IRn. Then
u is differentiable a.e. if and only if

lim sup
y→x

|u(y)− u(x)|
|y − x|

<∞ a.e.

2

Actually Stepanov’s theorem can be rather easily deduced form the Rademacher theo-
rem.

Now we turn our attantion to study of the Lebesgue pointes of Sobolev functions.

As we will see in the case in which u belongs to the Sobolev space not only the
measure of the set of points which are not Lebesgue points is zero but also its Hausdorff
dimension is small. Actually it is not very surprising: we can take a trace of a Sobolev
function on a (n − 1)-dimensional set. This suggests that the dimension of the set of
points which are not Lebesgue points should be at most (n − 1). Moreover if p > n,
then the Sobolev function is continuous and hence all points are the Lebesgue points.
This also suggests that as p < n approaches n the Hausdorff dimension of the set of
non-Lebesgue points should go to zero. The above two facts suggest n− p as a natural
candidate for the Hausdorff dimension.

First we need recall the definition of the Hausdorff measure and the Hausdorff
dimension.

The volume of the unit ball in IRn equal ωn = 2πn/2/(nΓ(n/2)). This formula allows
one to define ωn for any real number n > 0. For n = 0 we set ωn = 1.

Let s ≥ 0. For any E ⊂ IRn and 0 < δ <∞ we put

Hs
δ (E) = inf

ωs
2s
∑
i

(diamEi)
s ,

where the infimum is taken over all coverings E ⊂ ⋃∞i=1Ei such that supi diamEi < δ.
Now we define the Haudorff meaure as

Hs(E) = lim
δ→0

Hs
δ (E) = sup

δ>0
Hs
δ (E) .

The existence of the limit follows from the fact that the function δ 7→ Hs
δ (E) is nonde-

creasing.

Hs is a Borel measure and H0 is a counting measure. One can prove that for any
E ⊂ IRn, Hn(E) = |E|, where |E| is the outher Lebegue measure. Thus the Haudorff
measure is a natural generalization of the Lebesgue measure to the case in which the
dimension of the measure is different than the dimension of the space.

Given a set E ⊂ IRn it is easy to see that there is a real number 0 ≤ s ≤ n such
that H t(E) = 0 for all t > s and H t(E) =∞ for all 0 ≤ t < s. The number s is called
the Hausdorff dimension of the set E.
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There is another slightly more convenient — but equivalent — way to define the
Hausdorff dimension.

For a set E ⊂ IRn and s > 0 we define the Hausdorff content as Hs
∞(A) = inf

∑
i r
s
i ,

where infimum is taken over all coverings of E by balls Bi with radii ri.

The definition of Hs
∞ differs from the above definition of Hs

δ with δ = ∞ by a
constant factor and by a fact that coverings by arbitrary sets are replaced by coverings
by balls.

Given a set E ⊂ IRn, it is easy to see that there is a real number 0 ≤ s ≤ n such
that H t

∞(E) = 0 for t > s and H t
∞(E) > 0 for 0 ≤ t < s. It is easy to see that s equals

the Haudorff dimension of the set E.

The last statement follows from an elementary observation that H t(E) = 0 if and
only if H t

∞(E) = 0. Observe however that the properties of the content H t
∞ are very

different from the properties of the Hausdorff measure H t. Indeed, H t
∞ is not a Borel

measure and it is finite on all bounded sets while H t is not.

All the above definitions of the Haudorff measure, Hausdorff content and the Haus-
dorff dimension extend without any modification to the setting of metric spaces.

If u ∈ W 1,p(Ω), p > n, then the function is locally Hölder continuous and hence all
the points are the Lebesgue points. Thus we may assume that p ≤ n.

The choice of the representative (12) is particularly convenient when we deal with
Sobolev functions. Till the end of the lecture we will always assume that u ∈ W 1,p(Ω)
coincides everywhere with the representative ũ and we will omit the tilde sign. However
one has to be very careful since, for example, it may happen that for some x, ũ(x) 6=
−(−̃u)(x).

Theorem 52 Let u ∈ W 1,p(Ω), where Ω ⊂ IRn and 1 ≤ p ≤ n. Then the Hausdorff
dimension of the set of points which are not Lebesgue points of the function u is less
than or equal to n− p.

Before we prove the theorem we need some auxiliary results. As we know the function
u ∈ W 1,p(B) satisfies inequality (5) a.e. If we however choose the representative (12)
then the inequality holds everywhere! More precisely we have.

Theorem 53 If u ∈ W 1,p(B) coincides everywhere with the representative (12) then
there is a constant C = C(n, p) such that

|u(x)− uB| ≤ C
∫
B

|∇u(z)|
|x− z|n−1

dz (13)

for all x ∈ B.
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Remark. It does not follow from the proof that the constant C in inequality (13) equals
the constant in inequalty (5).

Proof. Let uε(x) =
∫
B(x,ε)u(z) dz. Then by Lemma 25 we have

|uε(x)− uB| ≤
∫
B(x,ε)

|u(z)− uB| dz

≤ C
∫
B(x,ε)

∫
B

|∇u(w)|
|z − w|n−1

dw dz

= C
∫
B

(∫
B(x,ε)

dz

|z − w|n−1

)
|∇u(w)| dw

≤ C ′
∫
B

|∇u(w)|
|x− w|n−1

dw. (14)

The last inequality follows form the following elementary lemma whose proof is left to
the reder.

Lemma 54 There is a constant C = C(n) such that for any ε > 0 and any x, y ∈ IRn

there is ∫
B(x,ε)

dz

|z − w|n−1
≤ C

|x− w|n−1
.

2

Now the claim follows by passing to the limit in inequality (14) as ε→ 0. The proof
is complete. 2

Recall the notation

IΩ
1 g(x) =

∫
Ω

g(z)

|x− z|n−1
dz.

Corollary 55 Let u ∈ W 1,p(Ω). Then the set of points which are not Lebesgue points
for u is contained in the set

{x ∈ Ω : IΩ
1 |∇u|(x) =∞} .

Proof. Since∫
B(x,ε)

|u(z)− u(x)| dz ≤
∫
B(x,ε)

|u(z)− uB(x,ε)| dz + |u(x)− uB(x,ε)|,

it suffices to prove that the right hand side converges to zero as ε→ 0 when

IΩ
1 |∇u|(x) <∞. (15)
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Observe that (15) implies that
∫
B(x,ε) |∇u(z)||x− z|1−n dz → 0 as ε→ 0. Hence

|u(x)− uB(x,ε)| ≤ C
∫
B(x,ε)

|∇u(z)|
|x− z|n−1

dz → 0

as ε→ 0. Moreover applying Lemma 54 we get∫
B(x,ε)

|u(z)− uB(x,ε)| dz ≤ C
∫
B(x,ε)

∫
B(x,ε)

|∇u(w)|
|z − w|n−1

dw dz

≤ C ′
∫
B(x,ε)

|∇u(w)|
|x− w|n−1

dw → 0

as ε→ 0. The above estimates easily imply the claim. The proof is complete. 2

Proof of Theorem 52. Observe that the case of Theorem 52 in which p = n follows
from the case in which 1 ≤ p < n. Thus in what follows we may assume that 1 ≤ p < n.

Since the question of the estimate of the Hausdorff dimension is local in its nature
we may assume that the domain Ω is a ball. Thus it suffices to prove that for any
g ∈ Lp(B), 1 ≤ p < n and any ε > 0 there is

Hn−p+ε
∞ ({IB1 g =∞}) = 0 .

We need the following modification of the Hardy–Littlewood maximal function.

Let R > 0, λ ≥ 0. The fractional maximal function is defined as

Mλ
Rg(x) = sup

0<r<R
rλ
∫
B(x,r)

|g(z)| dz.

Obviously M0
∞g = Mg is the classical Hardy–Littlewood maximal function.

The next lemma provides an estimate of the Riesz potential in terms of the fractional
maximal function.

Lemma 56 If 0 ≤ λ < 1 then there exists a constant C such that∫
B

|g(z)|
|x− z|n−1

dz ≤ Cr1−λMλ
diamBg(x)

for all g ∈ L1(B) and all x ∈ B. Here B is a ball of radius r.

Proof. We break the integral on the left hand side into the sum of the integrals over
‘rings’ B ∩ (B(x, diamB/2k) \B(x, diamB/2k+1)). In each ‘ring’ we have |x− z|1−n ≈
(diamB/2k)1−n. Now we estimate the integral over the ‘ring’ by the integral over the
ball B(x, r/2k) and the lemma follows easily. 2

The following result is a variant of weak type estimate (10). Actually the proof
follows the same argument and we leave details to the reader.
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Lemma 57 Let g ∈ Lp(IRn), 1 ≤ p <∞, R > 0 and λ ≥ 0. Then

Hn−λp
∞

(
{Mλ

Rg > t}
)
≤ Ct−p

∫
IRn

gp.

2

In particular Hn−λp
∞ ({Mλ

Rg =∞}) = 0. Hence Lemma 56 yields that for g ∈ Lp(B)
and 0 ≤ λ < 1 we have

Hn−λp
∞ ({IB1 g =∞}) ≤ Hn−λp

∞ ({Mλ
diamBg =∞}) = 0.

Since n− p+ ε = n− λp for some 0 ≤ λ < 1 the claim follows. The proof is complete.
2

Pointwise inequality. As a by product of the above results we obtain the following
powerful inequality.

Theorem 58 If u ∈ W 1,p(Rn), 1 ≤ p <∞ and 0 ≤ λ < 1 then

|u(x)− u(y)| ≤ C|x− y|1−λ
(
Mλ

2|x−y||∇u|(x) +Mλ
2|x−y||∇u|(y)

)
for all x, y ∈ IRn, x 6= y.

The above inequality will be often called pointwise inequality.

The inequality requires some explanations. It may happen that the left hand side
of the inequality is of the indefinite form like |∞ −∞|, then we adopt the convention
|∞ − ∞| = ∞. In such a case the inequality is still valid since ũ(z) = ±∞ implies
Mλ

R|∇u|(z) = ∞ for any R > 0. We assume that x 6= y as it could lead to ambiguity
when u(x) = ∞. Indeed, in such a case we would have ∞ on the left hand side while
the right hand side would be of the form 0 ·∞. Anyway the inequality is not interesting
when x = y.

Proof of Theorem 58. For x, y ∈ B, diamB ≈ |x− y| we have

|u(x)− u(y)| ≤ |u(x)− uB|+ |u(y)− uB| ≤ C

(∫
B

|∇u(z)|
|x− z|n−1

dz +
∫
B

|∇u(z)|
|y − z|n−1

dz

)
≤ C|x− y|1−λ

(
Mλ

2|x−y||∇u|(x) +Mλ
2|x−y||∇u|(y)

)
.

The last inequality follows from Lemma 56. The proof is complete. 2

Now we will provide some applications of Theorem 58.

Obviously Theorem 58 generalizes also to u ∈ W 1,p(Ω), where Ω is a bounded
domain with the extension propoerty which means there is a bounded linear extension
operator E : W 1,p(Ω)→ W 1,p(IRn). Namely we have

|u(x)− u(y)| ≤ C|x− y|1−λ
(
Mλ

2diam Ω|∇(Eu)|(x) +Mλ
2diam Ω|∇(Eu)|(y)

)
, a.e. (16)

Theorem 58 immediately implies the folloinwg important Morrey’s lemma.
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Corollary 59 (Morrey’s lemma) Let u ∈ W 1,p(Ω), where Ω ⊂ IRn is open and
1 ≤ p <∞. Suppose that for some constants 0 < µ ≤ 1, M > 0,∫

B(x,R)
|∇u|p ≤MpRn−p+pµ,

holds whenever B(x,R) ⊂ Ω. Then u ∈ C0,µ
loc (Ω), and in each ball B such that 5B ⊂ Ω

the inequality
|u(x)− u(y)| ≤ CM |x− y|µ

holds for all x, y ∈ B with a constant C depending on n, p and µ only.

Proof. Indeed, the hypothesis of the corollary implies that the suitable fractional max-
imal function with λ = 1 − µ is finite. Since the Morrey lemma is local in its nature
we do not need any regularity upon the boundary of Ω. 2

Assume for a moment that u ∈ W 1,p(IRn) has compact support with diameter less
than 1/2. Than it easily follows from Theorem 58 that

|u(x)− u(y)| ≤ C|x− y|1−λ
(
Mλ

1 |∇u|(x) +Mλ
1 |∇u|(y)

)
, (17)

for all x, y ∈ IRn, x 6= y. Let Eλ,t = {x ∈ IRn |Mλ
1 |∇u|(x) ≤ t}. Obviously u|Eλ,t

is
C0,1−λ-Hölder continuous with the constant 2tC. Note, that we employed (17) every-
where.

Lemma 60 Any Lipschitz function defined on an arbitrary subset of an arbitrary met-
ric space can be extended to the entire space with the same Lipschitz constant.

Proof. Let X be a metric space and u : E → IR, E ⊂ X a Lipschitz function with the
Lipschitz constant L. Then we extend u to the entire space X by the formula

u(x) = inf
a∈E
{u(a) + Lρ(a, x)} ,

where ρ denotes the metric. It is easy to see that u is Lipschitz with the same Lipschitz
constant L. 2

The result holds also for the extensions of C0,µ-Hölder continuous functions, because
C0,µ function is Lipschitz with respect to a new metric d′(x, y) = d(x, y)µ. This implies
that there exists a C0,1−λ function uλ,t defined on the entire IRn such that uλ,t|Eλ,t

=
u|Eλ,t

.

As it follows from Lemma 57 Hn−λp
∞ (IRn \ Eλ,t) ≤ Ct−p

∫
IRn |∇u|p.

If λ → 1 and t → ∞, then IRn \ Eλ,t is a decreasing sequence of open sets and it
follows from the estimate that the intersection of these sets has the Hausdorff dimension
less than or equal to n− p.

Using the partition of unity the above argument applies to u ∈ W 1,p
loc (Ω), where

Ω ⊂ IRn is an arbitrary open set. This leads to the following theorem.
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Theorem 61 If u ∈ W 1,p
loc (Ω) coincides everywhere with the representative (12), then

there exists a sequence of compact sets X1 ⊂ X2 ⊂ . . . ⊂ Xk ⊂ . . . ⊂ Ω and a sequence
of Hölder continuous functions uk on Ω such that uk|Xk

= u|Xk
and Ω \ ⋃kXk has the

Hausdorff dimension less than or equal to n− p.

Both of Theorems 52 and 61 show that it is reasonable to talk about values of u ∈
W 1,p(Ω) except the set of dimension n− p. Hence if p > 1, we can define a trace of the
Sobolev function on a (n− 1)-dimensional submanifold of Ω just as a restriction. If we
want to define the trace on the boundary of Ω (provided it is sufficiently regular), we
first extend the Sobolev function to W 1,p(IRn) and then we take a restriction. As we
have seen earlier, in the case in which p = 1 one can also define a trace, however the
above approach does not cover that case.

In general, the Hölder exponent of the functions uk in Theorem 61 has to go to
0 as k → ∞. If we want to have an additional condition that all the functions uk
have a fixed Hölder exponent 1 − λ, then by the same argument as above we get
Hn−λp
∞ (Ω\⋃kXk) = 0, which is slightly more than to say that the Hausdorff dimension

is less than or equal to n−λp. In particular we get the classical Sobolev imbedding into
the Hölder continuous functions when p > n. Indeed, take λ = n/p. Then n− λp = 0

and hence u ∈ C0,1−n/p
loc (Ω).

On the other hand if λ = 0 and 1 ≤ p <∞, we get that the Sobolev function coin-
cides with a Lipschitz continuous function outside a set of an arbitrary small measure.
Lipschitz functions belong also to the Sobolev spaces W 1,p for all p. Careful estimates
of the W 1,p norm of these Lipschitz functions shows that they approximate our Sobolev
function in the Sobolev norm. Hence we obtain

Theorem 62 Let Ω ⊂ IRn be a bounded domain with the Lipschitz boundary and u ∈
W 1,p(Ω), 1 ≤ p ≤ ∞. Then to every ε > 0 there is a Lipschitz function w ∈ Lip (Ω)
such that

1. |{x ∈ Ω : u(x) 6= w(x)}| < ε,

2. ‖u− w‖W 1,p(Ω) < ε.

As a next application of the pointwise inequality we give a characterization the
Sobolev space that does not involve the notion of the derivative.

If 1 < p ≤ ∞, then by the Hardy–Littlewood theorem the maximal operator is
bounded in Lp. This in connection with (16) for λ = 0, implies that to every u ∈
W 1,p(Ω), where Ω ⊂ IRn is a bounded domain with sufficiently regular boundary, there
exists g ∈ Lp(Ω), g ≥ 0, such that

|u(x)− u(y)| ≤ |x− y|(g(x) + g(y)) a.e. (18)
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On the other hand if u ∈ Lp 1 < p ≤ ∞ satisfies (18) with 0 ≤ g ∈ Lp(Ω), then it
follows from Theorem 23 that u ∈ W 1,p(Ω). Hence we have proved the following result.

Theorem 63 Let Ω be a bounded domain with the extension property and 1 < p ≤ ∞.
Then u ∈ W 1,p(Ω) if and only if there exists 0 ≤ g ∈ Lp(Ω), such that (18) holds.
Moreover

‖∇u‖Lp(Ω) ≈ inf
g
‖g‖Lp(Ω),

where the infimum is taken over all functions g which satisfy (18).

In the case p = ∞ we recover a classical result which states that W 1,p(Ω) = Lip (Ω).
Hence it is natural to call the above theorem a Lipschitz type characterization of Sobolev
functions.

We will see later that the above characterization is very usefull when trying to
generalize the notion of the Sobolev space to the setting of metric spaces. Indeed, if
(X, d, µ) is a metric space equipped with a Borel measure, then we can define Sobolev
space for 1 < p ≤ ∞ as the set of all Lp functions for which there exists 0 ≤ g ∈ Lp(X)
such that |u(x)−u(y)| ≤ d(x, y)(g(x)+g(y)) a.e. We will come back to this construction
in the last lecture.

Conformal mappings and Sobolev spaces. Theory of Sobolev spaces has many
applications in the areas different than calculus of variations or PDE. In this last section
we describe some of the basic applications to the theory of conformal mappings.

Let Ω ⊂ C be bounded and simply connected domain. Let ψ : D → Ω be a Riemann
mapping, where D is the unit disc D = B2(1).

It follows from the Cauchy–Riemann equations that |ψ′|2 = Jψ, where Jψ denotes
the Jacobian. Hence ∫

D
|ψ′|2 =

∫
D
Jψ = |ψ(D)| = |Ω| <∞.

Thus ψ ∈ W 1,2(D). As we will see this simply observation has many important conse-
quences. At the first glance it is surprising. We know that ψ is smooth, but Sobolev
functions are measurable only, so how does the information that the Riemann mapping
belongs to the Sobolev space can be employed?

Let u : IRn → IRn be Borel mapping. We say that u has Lusin’s property (N) if it
maps sets of Lebesgue measure zero into sets of measure zero. |E| = 0 ⇒ |f(E)| = 0.
Here |E| as usual denotes the Lebesgue measure.

Theorem 64 Any mapping u ∈ W 1,p(IRn, IRn), where p > n has the Lusin property.

Here u ∈ W 1,p(IRn, IRn) means that the coordinate functions of u belong to the Sobolev
space W 1,p(IRn).
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Before we prove the theorem we show that the theorem fails for p = n.

Let Ω be a bounded Jordan domain whose boundary has positive two dimensional
Lebesgue measure and let ψ : D → Ω be a Riemann mapping. Since ψ ∈ W 1,2 we
can extend it to a mapping Eψ ∈ W 1,2(IR2, IR2). Note that ψ is continuous up to
the boundary of D, so Eψ is continuous on the entire IR2. Now Eψ(∂D) = ∂Ω and
∂Ω has positive measure, so Eψ does not satisfy Lusin’s property. It is possible to
extend the example to any dimension n ≥ 2. However in dimensions greater than 2 the
construction has to be different: we cannot use the Riemann mapping.

Proof of Theorem 64. Let |E| = 0. Given ε > 0 take an open set Ω such that E ⊂ Ω
and |Ω| < ε Let Ω =

⋃
iQi be a decomposition of Ω into a family of cubes with pairwise

disjoint interiors.

By the Sobolev inequality

|u(x)− u(y)| ≤ C|x− y|1−n/p
(∫

Qi

|∇u|p
)1/p

,

for all x, y ∈ Qi and hence

diamu(Qi) ≤ C(diamQi)
1−n/p

(∫
Qi

|∇u|p
)1/p

.

Since the set u(E) is covered by
⋃
i u(Qi) we obtain

|u(E)| ≤ C
∑
i

(diamu(Qi))
n ≤ C

∑
i

(diamQi)
n( p−n

p )
(∫

Qi

|∇u|p
)n/p

≤ C

(∑
i

(diamQi)
n

)(p−n)/p (∑
i

∫
Qi

|∇u|p
)n/p

≤ Cε
p−n

p

(∫
IRn
|∇u|p

)n/p
→ 0

as ε→ 0. We employed here the Hölder inequality. This completes the proof. 2

Corollary 65 Let Ω ⊂ C be a bounded Jordan domain whose boundary has positive
two dimensional Lebesgue measure and let ψ : D → Ω be a Riemann mapping. Then∫

D
|ψ′|p =∞,

for any p > 2.

Remark. The problem of finding the best exponent of the integrability of the gradient
of the inverse Riemann mapping is very difficult and very deep. Brenann’s conjecture
states that for any simply connected domain Ω ⊂ C and a Riemann mapping φ : Ω→ D
there is

∫
Ω |φ′|p <∞ for every p < 4.
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Proof of the corollary. Suppose that
∫
D |ψ′|p <∞ for some p > 2. Then we can extend

ψ to Eψ ∈ W 1,p(IR2, IR2) and we arrive to a contradiction between the Lusin property
for Eψ and the fact that |ψ(∂D)| = |∂Ω| > 0.

The next application will concern the estimates for a harmonic measure. Let Ω ⊂ C
be a bounded Jordan domain. Then for every ϕ ∈ C(∂Ω) one can solve the following
classical Dirichlet problem:

Find u ∈ C2(Ω) ∩ C(Ω) such that{
∆u = 0 in Ω
u|∂Ω = ϕ.

Given a boundary condition ϕ, denote the solution to the above problem by uϕ. Fix
z ∈ Ω. The mapping ϕ 7→ uϕ(z) is a continuous linear functional on the Banach space
C(∂Ω). This functional is also nonnegative in a sense that uϕ(z) ≥ 0 when ϕ ≥ 0. This
is a direct consequence of the maximum principle. Thus there exists a nonnegative
Radon measure ωz supported on ∂Ω such that for every ϕ ∈ C(∂Ω)

uϕ(z) =
∫
∂Ω
ϕdωz .

The measure ωz is called harmonic measure. It does not essentially depend on the
choice of z in the sense that for any z1, z2 ∈ Ω the measures ωz1 and ωz2 are mutually
absolutely continuous. For example the measure Ωz1 is supported by a set E (i.e.,
ωz1(C \ E) = 0) if and only if the measure ωz2 is supported by the set E.

For that reason very often when we talk about harmonic measures, we simply forget
about the dependence on the point z.

Theorem 66 (Øksendal) Harmonic measure is singular with respect to the two di-
mensional Lebesgue measure i.e. it is supported by a set of two dimensional measure
zero.

Nowdays there are much more sophisticated results saying that the harmonic measure
is supported by a set of Hausdorff dimension 1. However we will not touch those deep
results and we simply show how the theory of Sobolev spaces can be employed to
provide a rather simple proof of the Øksendal theorem.

Before we prceed to the proof, we need know more about harmonic measures and
Sobolev spaces.

Given a Jordan domain Ω one can solve the Dirichlet problem employing Riemann’s
mapping. Fix z ∈ Ω and let ψ : D → Ω be a Riemann mapping such that ψ(0) = z.
If ϕ ∈ C(∂Ω), then the function ϕ ◦ ψ is contnuous on ∂D and hence we can find the
harmonic function v in D which coincides with ϕ ◦ψ on ∂D. Since harmonic functions
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are invariant under conformal mappings and ψ is continuous up to the boundary we
conclude that u = v ◦ ψ−1 is harmonic in Ω such that u|∂Ω = ϕ. Now∫

∂Ω
ϕdωz = u(z) = v(0) =

1

2π

∫
∂D
ϕ ◦ ψ dH1 (19)

for every ϕ ∈ C(∂Ω). The last equality follows from the mean value property for
harmonic functions. Identity (19) implies that ωz is the image of the measure (2π)−1H1

under the mapping ψ i.e.

ωz(A) = (2π)−1H1(ψ−1(A)), (20)

for every Borel set A ⊂ ∂Ω.

We want to prove that there exists F ⊂ ∂Ω such that H2(F ) = 0 and ωz(∂Ω\F ) = 0.
Because of (20) the equivalent problem is to find E ⊂ ∂D such that H1(E) = 0 and
H2(ψ(∂D \E)) = 0. Indeed, then the set F = ψ(∂D \E) will have desired properties.

Thus Øksendal’s theorem follows from the following more general result.

Theorem 67 Let G ⊂ IRn be a bounded domain with the smooth boundary and let
u ∈ W 1,n(G, IRn) be continuous up to the boundary. Then there exists E ⊂ ∂G such
that Hn−1(E) = 0 and Hn(u(∂G \ E)) = 0.

In the last theorem the condition Hn−1(E) = 0 can be replaced by a much stronger
condition that the Hausdorff dimension of the set E is zero. However we will not go
into details.

We will need the following lemma which is yet another variant of weak type estimates
for fractional maximal functions. Its proof is almost the same as that for Lemma 57.
We leave details to the reader.

Lemma 68 Let G be as above and 1 ≤ p < ∞. Then there exsts a constant C > 0
such that

Hn−1({x ∈ ∂G : M
1/p
1 g(x) > t}) ≤ C

tp

∫
IRn
|g(z)|p dz

for all g ∈ Lp(IRn).

We will also need the following

Lemma 69 Let G be as above, 1 ≤ p < ∞ and g ∈ Lp(IRn). Then to every ε > 0
there exists E ⊂ ∂G with Hn−1(E) < ε such that

sup
x∈∂G\E

M1/p
r g(x)→ 0 as r → 0.
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Proof. Let k ∈ C∞
0 (IRn) be such that ‖k − g‖pLp < εp+1. Let h = k − g. Obviously

there exists R < 1 with supx∈IRn M
1/p
R k < ε (because k ∈ C∞

0 ). Now since M
1/p
R g ≤

M
1/p
1 h+M

1/p
R k, then

Hn−1({M1/p
R g > 2ε}) ≤ Hn−1({M1/p

1 h > ε}) ≤ C

εp

∫
IRn
|h|p < Cε.

Let Ri, be such that Hn−1({M1/p
Ri
g > ε/(C2i−1)}) < ε/2i. Now it suffices to put

E =
⋃
i{M

1/p
Ri
g > ε/(C2i−1)}.

Proof of Theorem 67. Applying an extension operator we may assume that u ∈
W 1,n(IRn, IRn). We prove that theorem holds with E =

⋂
iEi, where Ei is as in

Lemma 69 with g = |∇u|, p = n and ε = 1/i. It suffices to prove that for every i,
Hn(u(∂G\Ei)) = 0. Let ∂G\Ei ⊂

⋃
j B(xj, rj), xj ∈ ∂G\Ei,

∑
rn−1
j < CHn−1(∂G\Ei),

supj rj < ε/4 < 1/4. It follows from Theorem 58 that u is (1− 1/n)-Hölder continuous
on ∂G \ Ei, so u(B(xj, rj) ∩ (∂G \ Ei) ⊂ B(u(xj), sj) where

sj < C( sup
∂G\Ei

M1/n
ε |∇u|)r

1−1/n
j .

Hence Hn(u(∂G \ Ei)) = 0, because according to Lemma 69∑
j

snj ≤ C( sup
∂G\Ei

M1/n
ε |∇u|)n

∑
j

rn−1
j → 0,

as ε→ 0. The proof is complete. 2

Lecture 5

Quasiconformal mappings. Today we will present an application of the theory of
Sobolev spaces to some geometric problems of homeomorphisms in IRn. Namely we
will discuss the theory of quasiconformal mappings.

Given a linear mapping A : IRn → IRn we will use two different norms of A. Namely
the Hilbert-Smith norm |A| = (

∑
i,j a

2
i,j)

1/2 and the operator norm ‖A‖ = supξ=1 |Aξ|.

For a given continuous mapping f : IRn → IRn we will use the notation Lf (x, r) =
sup|y−x|=r |f(y)− f(x)| and lf (x, r) = inf |y−x|=r |f(y)− f(x)|.

We say that a homeomorphism f : IRn → IRn is quasiconformal if there is a constant
H ≥ 1 such that

H(x, f) = lim sup
r→0

Lf (x, r)

lf (x, r)
≤ H for all x ∈ IRn. (21)

If in addition to (21) H(x, f) ≤ K a.e. we say that f is K-quasiconformal.

We also define another class of homeomorphisms.
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We say that a homeomorphism f : IRn → IRn is quasisymmetric if there is a constant
H ≥ 1 such that

Lf (x, r)

lf (x, r)
≤ H (22)

for all x ∈ IRn and all r > 0.

Homeomorphisms which are quasiconformal of quasisymmetric will be called qua-
siconformal or eqasisymmetric mappings.

Obviously the class of quasiconformal mappings contains that of quasisymetric map-
pings. Although condition (21) seems much weaker than (22) we will show that both
classes of quasiconformal and quasisymmetric mappings coincide. The an tool in the
proof is the theory of Sobolev spaces.

First we prove some regularity results for uasiconformal mappings.

If f is differentiable at a point x, then the condition H(x, f) ≤ K is equivalent to

max
|ξ|=1
|Df(x)ξ| ≤ K min

|ξ|=1
|Df(x)ξ|. (23)

The first deep result that we will prove is the following

Theorem 70 If f : Ω→ IRn is K-quasiconformal, then

1. f is differentiable a.e.,

2. f ∈ W 1,n
loc (Ω, IRn),

3. max|ξ|=1 |Df(x)ξ| ≤ K min|ξ|=1 |Df(x)ξ| a.e.

First we need recall some facts form the measure theory.

A measure µ on IRn is called Radon measure if it is a Borel measure and µ(K) <∞
for all compact sets K ⊂ IRn.

The following theorem due to Besicovitch generalizes the theorem of Lebesgue.

Theorem 71 (Besicovitch) If µ and ν are two Radon measures on IRn, then the
limit

dµ

dν

def
= lim

r→0

µ(B(x, r))

ν(B(x, r))

exists ν a.e. and dµ/dν ∈ L1
loc(IR

n, ν).
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We will not prove it. 2

Later we will need the theorem in the special case when ν = Hn is the Lebesgue
measure in IRn.

If f : Ω → IRn is a homeomorphism, then f maps Borel sets onto Borel sets and
hence we can define a Radon measure as follows

µf (A) = |f(A)|.

Lemma 72 If a homeomorphism f : Ω→ IRn, Ω ⊂ IRn is differentiable a.e., then the
Jacobian does not change the sign i.e. Jf ≥ 0 a.e. or Jf ≤ 0 a.e. Moreover in all the
points where f is differentiable we have

|Jf (x)| = lim
r→0

|f(B(x, r))|
|B(x, r)|

, (24)

and hence |Jf | = dµf/dH
n ∈ L1

loc.

Proof. The proof that Jf does not change the sign follows form an argument based on
the topological degree and we skip it. The equality (24) is simpler: If f is differentiable
at x ∈ Ω, then for small r, f(B(x, r)) almost coincides with the ellipsoid Df(x)(B(x, r))
and hence |f(B(x, r)| = |Df(x)(B(x, r))| + o(rn) = |Jf (x)||B(x, r)| + o(rn). Actually
the proof of this estimate for the volume of f(B(x, r)) follows form the definition of
the differential and from the Brouwer theorem. 2

Lemma 73 Let f : Ω→ IRn be a homeomorphism such that

H(x, f) = lim sup
r→0

Lf (x, r)

lf (x, r)
<∞ a.e.

Then f is differentiable a.e.

The assumption about f is weaker than that for the quasiconformal mapping: we do
not assume neither that H(x, f) is finite everywhere, nor that H(x, f) is bounded.

Proof. According to the Stepanov theorem (Theorem 51) it suffices to prove that

|D+f |(x) = lim sup
y→x

|f(y)− f(x)|
|y − x|

<∞ a.e.

We have

|D+f |(x) = lim sup
r→0

1

r
Lf (x, r)

= lim sup
r→0

lf (x, r)

r
· Lf (x, r)
lf (x, r)

≤ H(x, f) lim sup
r→0

1

r
lf (x, r).
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Observe that the ball centered at f(x) with the radius lf (x, r) is contained in f(B(x, r))
and hence

lf (x, r)
n

rn
≤ f(B(x, r))|
|B(x, r)|

.

This yields

|D+f |n(x) ≤ H(x, f)n lim sup
r→0

|f(B(x, r))|
|B(x, r)|

= H(x, f)n
dµf
dHn

(x) <∞,

almost everywhere. The proof is complete. 2

Proof of Theorem 70. The differentiability a.e. follows form Lemma 73. The
observation (23) yields condition 3. Thus we are left with the proof that f ∈ W 1,n

loc .

We will prove that f is absolutely continuous on almost all lines paralell to coordi-
nate axex. Then the theorem will follow from the ACL characterization of the Sobolev
space.

Let Qn ⊂ Ω be an open cube with faces paralell to coordinates. Let π : IRn → IRn−1

be the orthogonal projection in one of the coordinate directions. We define a Radon
measure ν on the (n− 1)-dimensional cube π(Qn) as follows

ν(A) = |f(π−1(A) ∩Qn)|.

It follows form Theorem 71 that

lim
r→0

ν(B(y, r))

rn−1
= ωn−1

dν

dHn−1
(y) <∞,

for a.e. y ∈ π(Qn). Here ωn−1 is the volume of the unit ball in IRn−1. Next we prove
that for every compact set F ⊂ π−1(y) ∩Qn

(H1(ϕ(F )))n ≤ C(H1(F ))n−1 dν

dHn−1
(y). (25)

Before we prove it observe that this impies absolute continuity of f along the segment
π−1(y) ∩ Qn, whenever dν/dHn−1(y) < ∞ and hence te ACL property follows. Then
the linear Df(x) maps the unit ball onto an ellipsoid with axes λ1 ≤ λ2 ≤ . . . ≤ λn.
The condition (23) means λn ≤ Kλ1. Hence

|Df(x)|n =

(
n∑
i=1

λ2
i

)n/2
≤ C

n∑
i=1

λni ≤ C ′λ1 · · ·λn = |Jf | ∈ L1
loc.

We conclude that Df ∈ Lnloc which together with the ACL characterization of the
Sobolev space implies f ∈ W 1,n

loc .

Thus we are left with the proof of (25).
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Since f is quasiconformal there exists a constant H ≥ 1 such that (21) holds for all
x ∈ IRn.

For all sufficiently large integers k define

Fk {x ∈ F : Lf (x, r) ≤ 2H lf (x, r), whenever 0 < r < 1/k} . (26)

Obviously Fk are compact sets with Fk ⊂ Fk+1,
⋃
k F=F . We will estimate H1(f(Fk)).

Fix ε > 0 and k. Then for all sufficiently small 0 < r < 1/k there exists an integer
p such that Fk can be cobered by segments I1, . . . , Ip with the following properties: all
the segments have the same length |Ii| = 2r, all the segments are centered at Fk, each
point of Fk belongs to no more than two segments Ii and pr < H1(Fk) + ε.

To see that there is such a covering we first cover Fk by an open set U with H1(U \
Fk) < ε, then choose r < dist (Fk, ∂U), cover Fk by all segments of diameter 2r centered
at Fk, choose a finite subcovering and then remove all redundant segments.

Observe that p depends on r and in general p bigger as r smaller.

Let ai be the center of Ii. set Bi = Bn(ai, r). Inequality of (26) gives

diam f(Bi) ≤ 4nω−1
n Hn(f(Bi))

Hence the definition of H1 and the Hölder inequality yields

H1(f(Fk)) ≤ lim
r→0

p∑
i=1

diam f(Bi)

≤ lim
r→0

(
pn−1

p∑
i=1

(diam f(Bi))
n

)1/n

≤ 4ω−1/n
n H lim

r→0

(
pn−1

p∑
i=1

|f(Bi)|
)1/n

≤ C(n)H(H1(Fk) + ε)(n−1)/n lim
r→0

(
r1−n

p∑
i=1

|f(Bi)|
)1/n

(27)

The last inequality follows form the estimate pr < H1(Fk) = ε. now observe that all
the balls Bi are contained in ∆ = π−1(Bn−1(y, r)) ∩Qn and hence (27) gives

H1(f(Fk)) ≤ C(n)H(H1(Fk) + ε)(n−1)/n

(
dν

dHn−1
(y)

)1/n

.

Now inequality (25) follows by assing to the limits as ε → 0 and then k → ∞. The
proof is complete. 2

Now we can prove that the classes of quasiconformal and quasisymmetric mappings
coincide. namely we will prove.
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Theorem 74 Let F : IRn → IRn be a homeomorphism. Then the following conditions
are equaivalent

1. f is quasiconformal,

2. f is quasisymmetric,

3. r ∈ W 1,n
loc (IRn, IRn), Jf des not change sign i.e. Jf ≥ 0 a.e. or Jf ≤ 0 a.e. and

there is a constant K ≥ 1 such that

max
|ξ|=1
|Df(x)ξ| ≤ K min

|ξ|=1
|Df(x)ξ| a.e. (28)

Remark. The assumption that Jf does not change sign is superflous as one can prove
that any W 1,n homeomorphism is differentiable a.e. and hence Jf does not change sign
by Lemma 72.

Proof of Theorem 74. The implication 2. ⇒ 1. is obvious and the implication 1. ⇒ 3.
follows from Theorem 70. Throough the proof C,C ′, C ′′ will denote general constants
depending on n only. Observe that (28) implies that

‖Df(x)‖n ≤ Kn−1|Jf | a.e.

Define

ψ(z) =


1 if |z| ≤ l,
(logL/l)−1 log(L/|z|) if l ≤ |z| ≤ L,
0 if |z| ≥ L.

and define ϕ(z) = ψ(z − x). The function ξ is Lipschitz and∫
IRn
|∇ϕ|n =

∫
IRn
|∇ψ|n = (logL/l)−n

∫
B(0,L)\B(0,l)

|x|−n = nωn(logL/l)1−n .

Let E = f−1(B(0, l)) and F ′ = f−1(IRn \ B(0, L)) ∩ B(x, 2r). Then E is a continuum
that connects x to the boundary ∂B(x, r) and F ′ contains a continuum F that connects
∂B(x, r) to ∂B(x, 2r). Hence H1

∞(E) ≥ r, H1
∞(F ) ≥ r and dist (E,F ) ≤ r.

The function v = ϕ ◦ f is continuous and belongs to W 1,n
loc (because ϕ is Lipschitz).

Moreover v = 1 on E and v = 0 on F . Now we estimate the Ln norm of the gradient
of v empying the change of variables formula.∫

IRn
|∇v(x)|n ≤

∫
IRn
|∇ϕ(f(x))|n‖Df(x)‖n

≤ Kn−1
∫
IRn
|∇ϕ(f(x))|n|Jf (x)|n

= Kn−1
∫
IRn
|∇ϕ|n

= nωnK
n−1(logL/l)1−n .
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We want to show that the ratio L/l is bounded. To this end it suffices t show that the
integral

∫
|∇v|n is bounded from below by an universal constant.

Recall that by Theorem 58 the pointwise inequality holds

|v(x)− v(y)| ≤ C|x− y|1/n
(
M1−1/n|∇v|(x) +M1−1/n|∇v|(y)

)
.

Taking x ∈ E and y ∈ F yields

1 ≤ Cr1/n
(
M1−1/n|∇v|(x) +M1−1/n|∇v|(y)

)
.

This implies that there is another constant C such that either M1−1/n|∇v|(x) ≥ Cr−1/n

for all x ∈ E or M1−1/n|∇v|(y) ≥ Cr−1/n for all y ∈ F . Assume the first case. The
proof for the second case is analogous. By Lemma 57 we obtain

r ≤ H1
∞(M1−1/n|∇v| > Cr−1/n) ≤ C ′r

∫
IRn
|∇v|n ≤ C ′′rKn−1(logL/l)1−n ,

and hence
L ≤ l exp(CK).

The proof is complete. 2

Mostov rigidity theorem. One of the most celebrated applications of the theory
of quasiconformal mappings is so called Mostow ridigidity theorem. Unfortunately the
theorem goes far beyond the scope of the material presented in the lectures, so we will
only sketch the main ideas giveing a fravour of the beauty and deepness of the result.

Let us first state the theorem. Then we will explain the statement and the main
idea of the proof.

Theorem 75 (Mostow) Let Y and Y ′ be compact Reimannian maniflds of dimmen-
sion n ≥ 3 and of the constant sectional curvature −1. If Y and Y ′ are diffeomorphic,
then they are isometric.

The theorem is false if n = 2.

Quasiregular mappings.

Lecture 6

Gromov and the isoperimetric inequality. The aim of this section is to prove the
following result of Federer, Fleming and Maz’ya.

Theorem 76 For any u ∈ W 1,1(IRn) there is(∫
IRn
|u|

n
n−1 dx

)n−1
n

≤ n−1ω−1/n
n

∫
IRn
|∇u|, (29)
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where ωn is the volume of the unit ball. Moreover the constant n−1ω−1/n
n cannot be

replaced by a smaller one.

We have already proved the inequality, but with a worse constant. The exact value of
the conatsnt has a deep geometric meaning: we will see that Theorem 76 implies the
classical isoperimatric inequality.

Let K ⊂ IRn be a compact set. We define the Minkowski content as follows

µ+(K) = lim inf
ε→0

|{x ∈ IRn : 0 < dist (x,K) < ε}|
ε

. (30)

If K is a closure of an open, bounded set with the C2 boundary, then it easily follows
that µ+(K) = Hn−1(∂K). Thus the Minkowski content is a generalization of the surface
area.

The isoperimetric theorem states that among all the sets with the given volume,
the ball has the smallest area of the boundary. It can be expressed in the following
inequality.

Theorem 77 (Isoperimetric Inequality) Let K ⊂ IRn be a compact set. Then

|K|
n−1

n ≤ n−1ω−1/n
n µ+(K),

and the constant n−1ω−1/n
n cannot be replaced by any smaller constant.

Proof. First observe that if K = Bn, then we have the equality, so the constant cannot
be smaller. For any compact set K ⊂ IRn define

ϕ(x) =

{
1− ε−1dist (x,K) if dist (x,K) ≤ ε

0 otherwise

Then the function ϕ is Lipschitz. Since the Lipschitz constant of the function x 7→
dist (x,K) is 1, we conclude that |∇ϕ| ≤ ε−1 a.e. Moreover |∇ϕ(x)| = 0 a.e. outside
the strip {0 < dist (x,K) < ε}. Hence applying Theorem 76 to u = ϕ yields

|K|
n−1

n ≤
(∫

IRn
|ϕ|

n
n−1 dx

)n−1
n

≤ n−1ω−1/n
n

∫
IRn
|∇ϕ| dx

≤ n−1ω−1/n
n

|{x ∈ IRn : 0 < dist (x,K) < ε}|
ε

,

and the theorem follows. 2

Observe that the argument above implies that the constant in (29) cannot be smaller
(otherwise we would prove the isoperimetric inequality with a smaller constrant). Thus
we are left with the proof of (29).
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The proof that we present below is due to Gromov and it is one of the most beautiful
and the most unexpected proofs I have ever seen.

Proof of Theorem 76. Since |∇u| = |∇|u|| a.e. we may assume u ≥ 0 a.e. Moreover
by a standard approximation argument we may assume that u ∈ C∞

0 (IRn). Finally we
may require that the support of u is a ball and that u is strictly positive in that ball.
Indeed, otherwise we take 0 ≤ ϕ ∈ C∞

0 (IRn) whose support is a ball containing the
support of u and pass to the limit as ε→ 0. We will need the following lemma.

Lemma 78 Let 0 < f ∈ C1(Ω), where Ω ⊂ IRn is an open, bounded and convex set.
Then there exits a diffeomorphism Φ : Ω→ B(0, ω−1/n

n ) such that

1. Φ is a triangular mappping i.e.

Φ(x1, x2, . . . , xn) = (Φ1(x1),Φ2(x1, x2), . . . ,Φn(x1, x2, . . . , xn)) .

2. Derivatives ∂Φi/∂xi are strictly positive and

detDΦ(x) =
n∏
i=1

∂Φi

∂xi
=
f(x)∫

Ω f
, (31)

for all x ∈ Ω.

The radius of the ball B(0, ω−1/n
n ) was choosen in order to have a ball with the unit

volume.

The lemma is intereteng on it own: it shows that there is a diffeomorphism between
a ball and an arbitrary open, bounded and convex set, with a priori prescribed Jacobian.
In particular there exits a diffeomorphism between a unit cube and a ball of volume
one whose Jacobian equals one.

The denominator on the right hand side of (31) is a constant choosen for a normal-
ization. This is just to make a volume of the image of Φ equal to one. Indeed,

|Φ(Ω)| =
∫
Ω
| detDΦ| =

∫
Ω f∫
Ω f

= 1 .

Proof of Lemma 78. The proof is not much longer than a statement. We define the
diffeomorphism Φ explicite.

In the first step we prove a slightly modified verion of the lemma that we will
denote by Lemma 78’. Namely we replace B(0, ω−1/n

n ) by a unit cube Q = [0, 1]n in the
statement. All the oter words in the statement remain the same.

The desired diffeomorphim between Ω and Q, denoted by Ψ is defined by an explicite
formula.

Ψi(x1, x2, . . . , xi) =

∫
Ai(x)

f dzi . . . dzn∫
Bi(x)

f dzi . . . dzn
i = 1, 2, . . . , n ,
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where the sets Ai(x), Bi(x) are defined as follows

Ai(x) = {z = (z1, . . . , zn) : zj = xj for j < i and zi ≤ xi} ,

Bi(x) = {z = (z1, . . . , zn) : zj = xj for j < i} .

The best way to see the geometric interpretation of the sets is to make a three dimen-
sional picture.

B1(x) is the the whole domain Ω.

A1(x) is a “left” part of Ω cut by a n− 1 dimensional hyperplane perpendicular to the
axis x1 passing through a point x.

B2(x) is the interection of Ω and the n− 1 dimensional hyperplane.

A2(x) is a part of B2(x) cut by a n−2 dimensional hyperplane given by fixing the first
tow coordinates.

etc.

Observe that Ψi depends on variables x1,. . . , xi only, Ψi is strictly increasing with
respect to xi and hence Ψ is a one to one mapping with ∂Ψi/∂xi > 0. It is easy to see
that Ψ(Ω) = Q. Thus Ψ is a C1 homeomorphism. Since the matrix DΨ is triangular
we conclude that the Jacobi determinant is a product of the diagonal elements and
hence it is strictly positive. Thus Ψ is a diffeomorphism.

It follow from the definition of Ψi that

∂Ψi

∂xi
=

∫
Bi+1

f∫
Bi
f
,

and hence

detDΨ =
n∏
i=1

∂Ψi

∂xi
=

∫
Bn+1

f∫
B1
f

=
f(x)∫

Ω f
.

This completes the proof of Lemma 78’.

In particular we may apply the above contruction to Ω̃ = B(0, ω−1/n
n ) and f ≡ 1.

Thus we get a triagular diffeomorphism

Ψ̃ : B(0, ω−1/n
n )→ Q

with Jacobian equal to one. Hence Ψ̃−1 : Q → B(0, ω−1/n
n ) is a triangular diffeomor-

phism with the Jacobian equal to one a well. Now the diffeomorphsim Φ = Ψ̃−1 ◦ Ψ :
Ω→ B(0, ω−1/n

n ) verifies all the condition of lemma 78. The proof is complete. 2

Now we can complete the proof of Theorem 76.
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Let Ω be a support of u (Ω is a ball) and let f = |u|n/(n−1). By Lemma 78 there
exits a diffeomorphism

Φ : Ω→ B(0, ω−1/n
n )

such that

detDΦ =
n∏
i=1

∂Φi

∂xi
= |u|n/(n−1)/

∫
Ω
|u|n/(n−1) .

The arithmetic–geometric mean inequality yields

div Φ

n
= n−1

n∑
i=1

∂Φi

∂xi
≥
(

n∏
i=1

∂Φi

∂xi

)1/n

= |u|
1

n−1‖u‖
−1

n−1
n

n−1
.

Since the vector field uΦ ∈ C1(Ω) vanishes at the boundary of Ω, integration by parts
gives

0 =
∫
Ω

div (uΦ) =
∫
Ω
u div Φ +

∫
Ω
∇u · Φ .

Invoking that u > 0 in Ω we obtain

n
∫
Ω
|u||u|

1
n−1‖u‖

−1
n−1

n
n−1
≤
∫
Ω
|u|div Φ ≤

∫
Ω
|∇u||Φ| ≤ ω−1/n

n

∫
Ω
|∇u| ,

and hence inequality (29) follows. The proof is complete. 2

Lecture 7

Caccioppoli estimates. In the previous lectures we proved the existence of a weak
solution to the Dirichlet problem. Now we prove that this solution is in fact the classical
harmonic function. This important result is known as the Weyl lemma.

Theorem 79 (Weyl lemma) If u ∈ W 1,2
loc (Ω) is a weak solution to the Laplace equa-

tion ∆u = 0, then u ∈ C∞(Ω) and hence u is a classical harmonic function.

Proof. By the definition u is a weak solution to ∆u = 0 if and only if∫
Ω
∇u · ∇ϕ = 0 ∀ϕ ∈ C∞

0 (Ω). (32)

Note that (32) holds also for ϕ ∈ W 1,2(Ω) with compact support — simply by approx-
imating such ϕ by compactly supported smooth functions.

In the first step of the proof we will derive the so called Caccioppoli type inequality.
The idea is very simple and it easily generalizes to more complicated elliptic equations
or systems, where it is frequently employed.

Fix concentric balls B(r) ⊂⊂ B(R) ⊂⊂ Ω and let η ∈ C∞
0 (B(R)), 0 ≤ η ≤ 1,

η|B(r) ≡ 1, |∇η| ≤ 2/(R− r) be a cutoff function.
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Applying ϕ = (u− c)η2 to (32) we obtain∫
Ω
∇u ·

(
∇uη2 + 2(u− c)η∇η

)
= 0,

so ∫
Ω
|∇u|2η2 ≤ 2

∫
Ω
|u− c|η|∇u| |∇η| ≤ 2

(∫
Ω
|u− c|2|∇η|2

)1/2 (∫
Ω
|∇u|2η2

)1/2

.

Hence ∫
Ω
|∇u|2η2 ≤ 4

∫
Ω
|u− c|2|∇η|2,

which yields the following Caccioppoli inequality∫
B(r)
|∇u|2 ≤ 16

(R− r)2

∫
B(R)\B(r)

|u− c|2 , (33)

for any c ∈ IR. In particular we get∫
B(r)
|∇u|2 ≤ C(R, r)

∫
B(R)
|u|2. (34)

Assume for a moment that we already know that u ∈ C∞. Then also the derivatives
of u are harmonic and hence (34) applies to derivatives of u, so for r < r′ < R we get∫

B(r)
|∇2u|2 ≤ C1

∫
B(r′)
|∇u|2 ≤ C2

∫
B(R)
|u|2.

Repeating the argument with higher order derivatives we obtain∫
B(R/2)

|∇ku|2 dx ≤ C(R, k)
∫
B(R)
|u|2,

for k = 1, 2, 3, . . . In other words

‖u‖Wk,2(B(R/2)) ≤ C(R, k)‖u‖L2(B(R)). (35)

The inequality was proved under the asumption that u ∈ C∞. We shall prove now that
(35) holds also for any weakly harmonic function u ∈ W 1,2

loc (Ω).

Let uε(x) =
∫
u(x− y)φε(y) dy be a standard molifier approximation where φε(y) =

ε−nφ(y/ε), φ ∈ C∞
0 , φ ≥ 0,

∫
φ = 1.

Then uε ∈ C∞(Ωε), where Ωε consists of points in Ω with the distance to the
boundary bigger than ε. Note that uε is harmonic in Ωε. Indeed, for any ϕ ∈ C∞

0 (Ωε)
we have ∫

Ω
∇uε(x)∇ϕ(x) dx =

∫ (∫
u(y)∇xφε(x− y) dy

)
∇ϕ(x) dx

=
∫ (∫

∇xu(x− y)φε(y) dy
)
∇ϕ(x) dx

=
∫ (∫

∇xu(x− y)∇ϕ(x) dx
)
φε(y) dy = 0.
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Hence uε is a weakly harmonic function and since uε is C∞ smooth we conclude that
uε is a classical harmonic function. Thus (35) holds for each uε. Since uε → u in
L2(B(R)), we obtain that uε is a Cauchy sequence in W k,2(B(R/2)) and passing to the
limit yields (35) for u and all k = 1, 2, 3, . . . Hence by the Sobolev embedding theorem
(Corollary 42) u ∈ C∞. The proof is complete. 2

We will show now some typical applications of the Caccioppoli inequaity. However
for the clarity of presentation we will concentrate on very simple examples only.

Taking R = 2r in (33) and applying Poincaré inequality (Corollary 39) we get∫
B(r)
|∇u|2 dx ≤ 16

r2

∫
B(2r)\B(r)

|u− uB(2r)\B(r)|2 dx

≤ C(n)
∫
B(2r)\B(r)

|∇u|2 dx.

We have obtained the estimate of the integral over B(r) by an integral over an annulus.
Now we add C(n)

∫
B(r) |∇u|2 to both sides of the inequality to fill the hole in the annulus.

We get ∫
B(r)
|∇u|2 dx ≤ C(n)

C(n) + 1︸ ︷︷ ︸
<1

∫
B(2r)

|∇u|2 dx. (36)

For obvious reasons the argument is called hole–filling.

It is crucial that the coefficient in (36) is strictly less than 1. We will show some
applications of this fact.

Theorem 80 If u is a harmonic function on IRn with |∇u| ∈ L2(IRn), then u is
constant.

Proof. Passing to the limit as r →∞ in inequality (36) yields∫
IRn
|∇u|2 dx ≤ θ

∫
IRn
|∇u|2, θ < 1 .

Hence |∇u| = 0 a.e. and thus u is constant. 2

Corollary 81 Any bounded harmonic function on IR2 is constant.

Proof. By Caccioppoli inequality (33) we get∫
B(r)
|∇u|2 ≤ C

r2

∫
B(2r)

|u|2 ≤ C ′.

Since u is bounded, the constant C ′ does not depend on r. Passing to the limit as
r → ∞ we conclude that

∫
IR2 |∇u|2 dx < ∞ and hence u is constant by the previous

result. 2

51



Remark. The corollary holds in IRn for any n ≥ 1, but the proof is different. We will
prove this and more general results in Lecture 8.

More generally we say that u = (u1, . . . , um) ∈ W 1,p
loc (Ω, IRm), Ω ⊂ IRn, 1 < p < ∞

is a weak solution to the p-harmonic system, (u is a p-harmonic mapping) if

div (|∇u|p−2∇ui) = 0 , i = 1, 2, . . . ,m ,

i.e. ∫
|∇u|p−2〈∇ui,∇ϕ〉 = 0 ∀ϕ ∈ C∞

0 (Ω) and i = 1, 2, . . . ,m. (37)

Here |∇u| = (
∑
ij(∂ui/∂xj)

2)1/2. Taking ϕi = (ui−ci)ηp in (37) and adding up resulting
identities for all i leads to the following generalization of (33)∫

B(r)
|∇u|p ≤ C

(R− r)p
∫
B(R)\B(r)

|u− c|p ,

for any c = (c1, c2, . . . , cm). By the hole–filling argument∫
B(r)
|∇u|p ≤ θ

∫
B(2r)

|∇u|p , θ < 1 . (38)

Fix Ω′ ⊂⊂ Ω and let R = dist (Ω′, ∂Ω). Let x ∈ Ω′ and r < R. Take the integer k
such that R/2 ≤ 2kr < R. Then B(x, 2kr) ⊂ Ω and θk ≈ r− log2 θ. Hence iterating (38)
yields ∫

B(x,r)
|∇u|p ≤ Cr− log2 θ

∫
Ω
|∇u|p .

Since θ is slightly less than 1 we get α = − log2 θ ∈ (0, 1) and hence∫
B(x,r)

|∇u|p ≤ Crα ,

for all x ∈ Ω′ and r < R. If p = n, then by Morrey’s lemma (Corollary 59) we obtain
that u is Hölder continuous in Ω′. Thus we have proved

Corollary 82 n-harmonic mappings in Ω ⊂ IRn are locally Hölder continuous.

In general, in contrast to the case p = 2, the p-harmonic mappings need not be C∞

smooth. The optimal smoothness result (even for m = 1) is the following very difficult
theorem

Theorem 83 If u ∈ W 1,p
loc (Ω, IRm), 1 < p < ∞, Ω ⊂ IRn, is p-harmonic, then u ∈

C1,α
loc (Ω, IRm) for some α ∈ (0, 1).
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In Lecture 8 we will sketch the proof of Hölder continuity of p-harmonic functions (i.e.
when m = 1) for any 1 < p <∞.

As we will see the p-harmonic equations also appear as the equations for the mini-
mizers of some variational functionals.

Euler Lagrange Equations. The Dirichlet principle says that it is the same to seek
for the minimizer of the Dirichlet integral or for the solution to the Laplace equation.
The Laplace equation was derived by taking directional derivatives of the functional I in
all the directions ϕ ∈ C∞

0 . We took directional derivatives in the infinite dimensional
space of functions. Thus roughly speaking we can say that u is a minimizer of the
functional I if the “derivative” of I in point u is zero. We will generalize this observation
to the abstract setting of functionals on Banach spaces.

Let X be a Banach space and let I : X → IR. The directional derivative of I at
u ∈ X in the direction h ∈ X, h 6= 0 is defined as

DhI(u) = lim
t→0

I(u+ th)− I(u)

t
.

We say that I is differentiable in the sense of Gateaux at a point u ∈ X if for every
h ∈ X, h 6= 0 the directional derivative DhI(u) exists and the function h 7→ DhI(u) is
linear and continuous. This defines functional DI(u) ∈ X∗ by the formula 〈DI(u), h〉 =
DhI(u). We call DI(u) the Gateaux differential.

Proposition 84 If I : X → IR is Gateaux differentiable and I(u) = infu∈X I(u), then
DI(u) = 0. 2

Later we will see that this is an abstract statement of the so called Euler–Lagrange
equations. For example we will see that when we differentiate the functional I(u) =∫
|∇u|2, we obtain the equation ∆u = 0. This looks like the Dirichlet principle.

Theorem 85 Let I : X → IR be Gateaux differentiable. Then the following conditions
are equivalent.

1. I is convex,

2. I(v)− I(u) ≥ 〈DI(u), v − u〉 for all u, v ∈ X,

3. 〈DI(v)−DI(u), v − u〉 ≥ 0 for all u, v ∈ X.

Proof. 1.⇒ 2. Convexity implies that

I(u+ t(v − u))− I(u)

t
≤ I(v)− I(u)
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for t ∈ (0, 1) and hence the claim follows by passing to the limit as t → 0. 2. ⇒ 3. It
follows directly from the assumption that 〈−DI(u), v−u〉 ≥ I(u)−I(v) and 〈DI(v), v−
u〉 ≥ I(v) − I(u). Adding both inequalities we obtain the desired inequality. 3. ⇒ 1.
We have to prove that for any two points u, v ∈ X, the function f(t) = I(u+ t(v− u))
is convex. To this end it suffices to prove that f ′(t) is increasing. This follows easily
from the assumed inequality and the formula for f ′. 2

In the case of convex functionals the necesary condition given in Proposition 84 is
also sufficient.

Proposition 86 If I : X → IR is convex and Gateaux differentiable, then I(u) =
infu∈X I(u) if and only if DI(u) = 0.

Proof. It remains to prove the implication⇐. By the convexity and the above theorem
I(u)− I(u) ≥ 〈DI(u), u− u〉 = 0, hence I(u) ≥ I(u). 2

Note that we have similar situation in the case of the Dirichlet principle. The
condition ∆u = 0 is necessary and sufficient for u to be the minimizer.

Below we give some important examples of functionals differentiable in the Gateaux
sense.

Lemma 87 Let f : Ω× IR→ IR be measurable in x ∈ Ω (for every u ∈ IR) and C1 in
u ∈ IR (for almost every x ∈ Ω). Moreover assume the following growth conditions

|f(x, u)| ≤ a(x) + C|u|p, |f ′u(x, u)| ≤ b(x) + C|u|p−1

where a ∈ L1(Ω), b ∈ Lp/(p−1)(Ω) and 1 < p < ∞. Then the functional I(u) =∫
Ω f(x, u(x)) dx is Gateaux differentiable as defined on Lp(Ω) and

〈DI(u), v〉 =
∫
Ω
f ′u(x, u)v

Proof. The growth condition implies that I is defined and finite on Lp(Ω). We have

I(u+ tv)− I(u)

t
=
∫
Ω

f(x, u+ tv)− f(x, u)

t
=
∫
Ω

1

t

∫ t

0
f ′u(x, u+ sv)v ds dx. (39)

Observe that
1

t

∫ t

0
f ′u(x, u+ sv)v ds→ f ′u(x, u)v a.e.,

and that by the growth condition∣∣∣∣1t
∫ t

0
f ′u(x, u+ sv)v ds

∣∣∣∣ ≤ C
(
|b|p/(p−1) + |u|p + |v|p

)
,
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where C does not depend on t. Hence we may pass to the limit in (39) and we get

lim
t→0

I(u+ tv)− I(u)

t
=
∫
Ω
f ′u(x, u)v dx.

The proof is complete. 2

It is also easy to prove the following

Lemma 88 For 1 < p < ∞ the functional Ip =
∫
Ω |∇u|p is Gateaux differentiable on

W 1,p(Ω, IRm) and

〈DIp(u), v〉 = p
∫
Ω
|∇u|p−2〈∇u,∇v〉.

Since the functionl Ip is convex we get that

Ip(u) = inf
u∈W 1,p

w (Ω,IRm)
Ip(u) , (40)

if and only if DIp(u) = 0 i.e. if and only if u is a weak solution to the following system

div (|∇u|p−2∇ui) = 0 ui − wi ∈ W 1,p
0 (Ω) , i = 1, 2, . . . ,m . (41)

Here w = (w1, w2, . . . , wm) ∈ W 1,p(Ω, IRm). Moreover the strict convexity guarantess
the uniqueness of the minimizer or equivalently the uniqueness of the solution to the
system.

This is a version of the Dirichlet principle. Thus the problem of solving (41) reduces
to finding the minimizer of (40), which is easy, see Corollary 7. Equations (41) are
called Euler–Lagrange system for the minimizer of Ip. The variational approach easily
generalizes to more complicated elliptic equations or systems.

Now for the simplicity of the notation we will be cencerned with the case m = 1.

Theorem 89 Let Ω ⊂ IRn be a bounded domain with Lischitz boundary and 1 < p <
∞. Assume that the function f : Ω × IR → IR is measurable in x ∈ Ω, C1 in u ∈ IR
and satisfies

|f(x, u)| ≤ a(x) + C|u|q |f ′u(x, u)| ≤ b(x) + C|u|q−1

where q = np/(n−p) if p < n and q <∞ is any exponent if p ≥ n. Then the functional

I(u) =
∫
Ω

1

p
|∇u|p + f(x, u) (42)

is Gateaux differentiable as defined on the space W 1,p(Ω) and

〈DI(u), v〉 =
∫
Ω
|∇u|p−2〈∇u,∇v〉+

∫
Ω
f ′u(x, u)v (43)

for every v ∈ W 1,p(Ω).
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Proof. It easily follows from Lemma 87, Lemma 88 and the Sobolev embedding
W 1,p(Ω) ⊂ Lq(Ω). 2

Remark. If we define I on W 1,p
0 (Ω) only, Ω can be an arbitrary open and bounded set,

because then we still have W 1,p
0 (Ω) ⊂ Lq(Ω). In this case (43) holds for v ∈ W 1,p

0 (Ω).

Fix w ∈ W 1,p(Ω). If u is a minimizer of (42) in W 1,p
w (Ω), then u solves the equation

div (|∇u|p−2∇u) = f ′u(x, u) , u− w ∈ W 1,p
0 (Ω) . (44)

Indeed, if J(v) = I(v + w), then v = u− w is a minimizer of J on W 1,p
0 (Ω) and hence

DJ(v) = 0 i.e.,

0 = 〈DJ(v), ϕ〉 = 〈DI(v + w︸ ︷︷ ︸
u

), ϕ〉 ∀ϕ ∈ W 1,p
0 (Ω) ,

i.e. (44) holds. Equation (44) is called Euler–Lagrange equation for (42). Conversly
one can prove the existence of a solution to (44) by proving the existexce of a minimizer
to (42). This is our next aim.

Recall that if 1 < p < n, then p∗ = np/(n−p) is the Sobolev exponent. Let Ω ⊂ IRn

be a bounded Lipschitz domain. Assume that a function g : Ω× IR→ IR is measurable
in x ∈ Ω and continuous in u ∈ IR. If the following growth condition holds

|g(x, u)| ≤ C(1 + |u|q) (45)

where q ≤ p∗ − 1 when 1 < p < n and q <∞ when n ≤ p <∞, then the equation

div (|∇u|p−2∇u) = g(x, u) , u− w ∈ W 1,p
0 (Ω) (46)

is the Euler–Lagrange equation for the minimizer of the functional

I(u) =
∫
Ω

1

p
|∇u|p +G(x, u) , (47)

where G(x, u) =
∫ u
0 g(x, t) dt, defined on W 1,p

w (Ω). This follows from the estimate
|G(x, u)| ≤ C(1 + |u|q+1) and from Theorem 89.

In order to prove the existence of a minimizer of I we need find assumptions that
would guarantee that I is coercive and swlc.

Oberve that if g(x, u)u ≥ 0 for all u, then G(x, u) ≥ 0 and hence I is coercive. This
condition for g is too strong. We will relax it now.

Asume that
g(x, u)

u

|u|
≥ −γ|u|p−1 (48)

for all |u| ≥ M and a.e. x ∈ Ω. Here M and γ are constants such that M ≥ 0 and
γ < µ−1

1 , where µ1 is the best (the least) constant in the Poincaré inequality∫
Ω
|u|p ≤ µ1

∫
Ω
|∇u|p ∀u ∈ C∞

0 (Ω) .
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We claim that under conditions (45) and (48) the functional I is coercive on W 1,p
w (Ω).

Indeed, both the conditions imply that

G(x, u) ≥ −C − γ

p
|u|p

for all u ∈ IR. Hence

I(u) ≥ 1

p

∫
Ω
|∇u|p − γ

p

∫
Ω
|u|p − C ≥ 1

p
(1− γµ1)

∫
Ω
|∇u|p − C →∞

as ‖u‖1,p →∞ and u ∈ W 1,p
w (Ω).

Condition (48) is optimal. Namely at the end of the lecture we will show that the
functional constructed for g(x, u) = −µ−1

1 u|u|p−2 is not coercive on W 1,p
0 (Ω).

Now in order to have the swlc condition we need slightly relax condition (45).

Theorem 90 Let g satifies (45) and (48) and let the functional I be defined on W 1,p
w (Ω)

a above. Then the functional is coercive. If in addition q < p∗ − 1 when 1 < p < n
(in the case p ≥ n we do not change the assumption) then the functional I is swlsc
and hence it assumes the minimum which solves the Dirichlet problem (46) with the
boundary condition u ∈ W 1,p

w (Ω).

Proof. We have already proved that the functional is coercive. Now assume that
q < p∗ − 1 when 1 < p < n and q <∞ when p ≥ n.

Let vk ⇀ v weakly in W 1,p
0 (Ω). We have to prove that

I(v + w) ≤ lim inf
k→∞

I(vk + w). (49)

Under the additional assumption about q, the embedding W 1,p
0 (Ω) ⊂ Lq+1(Ω) is com-

pact and hence vk + w → v + w in Lq+1. Since |G(x, u)| ≤ C(1 + |u|q+1) we conclude
that ∫

Ω
G(x, vk + w)→

∫
Ω
G(x, v + w) . (50)

This follows easily form the following version of the dominated convergence theorem.

Lemma 91 Let |fk| ≤ gk, gk → g in L1 and fk → f a.e. Then
∫
fk →

∫
f . 2

Observe that ∫
Ω
|∇(v + w)|p ≤ lim inf

k→∞

∫
Ω
|∇(vk + w)|p. (51)

This is a direct consequence of Theorem 5. Now (50) and (51) impliy the swlsc property
(49) and then the theorem follows directly form Theorem 4. 2

We leave as an exercise the proof of the following variant of the above result.

57



Theorem 92 Let Ω ⊂ IRn be a bounded domain, 1 < p < ∞. Then for every f ∈
(W 1,p

0 (Ω, IRm))∗ there exists the unique solution to the following system

div (|∇u|p−2∇ui) = f ui ∈ W 1,p
0 (Ω) , i = 1, 2, . . . ,m .

Are the solutions Hölder continuous when p = n?

At the begining of the lecture we have proved that weak solutions to the Laplace
equation are C∞ smooth. Now we show a tricky and powerful method of proving the
regularity results for weak solutions to the nonlinear equations of the form

∆u = g(x, u), u ∈ W 1,2
loc (Ω) . (52)

The method is called bootstrap. First we need the following result due to Calderón and
Zygmund.

Theorem 93 (Calderón–Zygmund) If u ∈ W 1,2
loc (Ω) solves ∆u = f , where f ∈

Wm,p
loc (Ω), m = 0, 1, 2, . . ., 1 < p <∞, then u ∈ Wm+2,p

loc (Ω).

This is a very deep result and we will not prove it. 2

Assume now that g ∈ C∞(Ω× IR). Let u be a solution to (52). Then g(x, u) ∈ W 1,2
loc

and hecne by Theorem 93 u ∈ W 3,2
loc . This implies in turn that g(x, u) ∈ W 3,2

loc and then
u ∈ W 5,2

loc . . . Itetating this argument yields u ∈ W k,2
loc for any k. Hence by the Sobolev

embedding theorem u ∈ C∞. Thus we have proved

Theorem 94 If u is a solutioin to (52) with g ∈ C∞(Ω× IR), then u ∈ C∞(Ω).

Remark. We employed here the special case of Therem 93 in which p = 2. The proof
in this case is much easier than in the general one.

Assume now that g is measurable in x, continuous in u and that it satisfies the
following growth condition

|g(x, u)| ≤ C(1 + |u|q), 1 ≤ q < 2∗ =
n+ 2

n− 2
. (53)

Theorem 95 If u is a solution to (52) with the growth condition (53), then u ∈ C1,α
loc

for any 0 < α < 1.

Proof. Since u ∈ W 1,2
loc , Sobolev embedding yields u ∈ L2n/(n−2)

loc and hence g(x, u) ∈ Lp1loc,
where p1 = 2n

(n−2)q
> 1. Now by Theorem 93 u ∈ W 2,p1

loc and again by Sobolev embedding

g(x, u) ∈ Lp2loc, p2 = 2n
((n−2)q−4)q

> p1. The inequality p2 > p1 follows from the fact that

q < (n + 2)/(n − 1). Iterating this argument finitely many times yields u ∈ W 2,r
loc for
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any r < ∞. Hence by the Sobolev embedding theorem u ∈ C1,α
loc for all α < 1. The

proof is complete. 2

Eigenvalue problem. We start with considering the following two problems.

1. The best constant in the Poincaré inequality.

Let Ω ⊂ IRn be a bounded domain and 1 < p < ∞. Find the smallest constant µ
such that the inequality ∫

Ω
|u|p ≤ µ

∫
Ω
|∇u|p (54)

holds for every u ∈ W 1,p
0 (Ω).

Of course such a constant exists and is positive. This follows from the Poincaré
inequality. The smallest constant is called the best constant in the Poincaré inequality
and it will be denoted by µ1 throhought the lecture.

The second problem looks much different.

2. The first eigenvalue of the p-Laplace operator.

We say that λ is an eigenvalue of the p-Laplace operator −div (|∇u|p−2∇u) on
W 1,p

0 (Ω), where 1 < p <∞, if there exists 0 6= u ∈ W 1,p
0 (Ω) such that

−div (|∇u|p−2∇u) = λu|u|p−2. (55)

Such a function u is called eigenfunction. If p = 2, then we have the classical eigenvalue
problem for the Laplace operator.

Observe that every eigenvalue is positive. Indeed, by the definition of the weak
solution, (55) means that∫

Ω
|∇u|p−2〈∇u,∇v〉 = λ

∫
Ω
|u|p−2uv

for every v ∈ C∞
0 (Ω) and hence for every v ∈ W 1,p

0 (Ω). Taking v = u we obtain∫
Ω
|∇u|p = λ

∫
Ω
|u|p . (56)

Thus λ > 0. Note that inequality (56) implies that λ ≥ µ−1
1 . This gives the lower

bound for the eigenvalues. The following theorem says much more.

Theorem 96 There exists the smallest eigenvalue λ1 of the problem (55) and it satis-
fies λ1 = µ−1

1 , where µ1 is the best constant in the Poincaré inequality (54).

The eigenvalue λ1 is called the first eigenvalue.
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Note that (55) is the Euler–Lagrange equation of the functional

I(u) =
1

p

∫
Ω

(|∇u|p − λ|u|p) (57)

The similar situation was in Theorem 90, there are however two esential differences.
First of all Theorem 90 guarantees the existence of a solution but it does not say
anything about the properties of the solution. We already know that a solution of
(55) exits — a function constant equal to zero. However we are not interested in that
solution, we are looking for another one. In such a situation Theorem 90 cannot help.
The second difference is that that functional defined by (57) need not be coercive and
in fact in the most interesting case it is not.

Proof of Theorem 96. We know that λ ≥ µ−1
1 . It remains to prove that there exists

0 6= u0 ∈ W 1,p
0 (Ω) such that

−div (|∇u|p−2∇u) = µ−1
1 u|u|p−2. (58)

First note that u0 ∈ W 1,p
0 (Ω) satisfies (58) if and only it satisfies∫

Ω
|u|p = µ1

∫
Ω
|∇u|p. (59)

Assume that u0 satisfies (58). Integrating both sides of (58) against the test function
u0 we obtain (59). In the oposite direction, if u0 satisfies (59), then u0 is a minimizer
of the functional

E(u) =
1

p

∫
Ω

(
|∇u|p − µ−1

1 |u|p
)
.

Indeed, E(u0) = 0 and always E(u) ≥ 0 because of the Poincaré inequality. Hence u0

satisfies Euler–Lagrange equations (58).

Thus it remains to prove that there exists a nontrivial minimizer 0 6= u0 ∈ W 1,p
0 (Ω)

of the functinal E.

Let M consint of all u ∈ W 1,p
0 (Ω) such that

∫
Ω |u|p = 1. Minimize the functional

Ip(u) =
∫
Ω |∇u|p over M . Let uk ∈ M , Ip(uk) → infM Ip = µ−1

1 . By reflexivity of
the space W 1,p

0 (Ω) we can select a weakly convergent subsequence uk ⇀ u0 ∈ W 1,p
0 (Ω).

Then
∫
Ω |∇u0|p ≤ µ−1

1 . Since the imbedding W 1,p
0 (Ω) ⊂ Lp(Ω) is compact we conclude

that u0 ∈ M . Hence E(u0) = 0 and thus u0 is the desired minimizer. This completes
the proof. 2

Observe that the functional E(u) is not coercive. Indeed, if u0 is as in the above
proof then E(tu0) = 0, while ‖tu0‖1,p → ∞. This also shows that condition (48)
in Theorem 90 are optimal: here g(x, u) = −µ−1

1 u|u|p−2 satisfies (45) and (48) with
γ = −µ−1

1 which is not allowed.

Observe also that the functional E has infinitely many minimizers — each of the
functions tu0.
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There are many open problems concerning the eigenvalues of the problem (55). In
the linear case p = 2 the eigenvalues form an infinite discrete set 0 < λ1 < λ2 < . . .,
λi → ∞. No such result is known for p 6= 2. It is easy to show that the set of
eigenvalues of (55) is closed. Moreover one can prove that the set of eigenvalues is
infinite, unbounded and that the first eigenvalue is isolated.

We conclude the discussion about the eigenfunctions with the following theorem
that will be used in the next lecture.

Theorem 97 Let Ω ⊂ IRn be a bounded domain and let 1 < p < ∞. Then each
eigenfunction is continuous and bounded. Moreover the eigenfunction corresponding to
the first eigenvalue is either positive or negative everywhere is Ω.

We will not prove it. 2

Lecture 8

General variational integrals. Consider the functional of the form

I(u) =
∫
Ω
F (x,∇u),

where Ω ⊂ IRn is an open set, and F : Ω× IRn → IR is measurable in x for all ξ ∈ IRn

and C1 and strictly conves in ξ ∈ IRn for almost all x ∈ Ω. Assume in addition that F
satisfies the following growth condition

α|ξ|p ≤ F (x, ξ) ≤ β|ξ|p,

for almost all x ∈ Ω and all ξ ∈ IRn, where α, β > 0, 1 < p <∞ are fixed.

Under the above assumptions I is defined and finite on W 1,p(Ω). Moreover I is
strictly conves. Hence for every w ∈ W 1,p(Ω) there is the unique u ∈ W 1,p

w (Ω) such
that

I(u) = inf
u∈W 1,p

w (Ω)
I(u). (60)

Functional I is Gateaux differentiable on W 1,p(Ω). We compute its differential

〈DI(u), ϕ〉 =
d

dt
|t=0

∫
Ω
F (x,∇u+ t∇ϕ) dx =

∫
Ω
∇ξF (x,∇u) · ∇ϕdx .

Of course taking the differentiation under the sigen of the integral requires a proof, but
it is not very difficule and we leave it to the reader. Since I is strictly convex, we get
that u is a minimizer of I if and only if DI(u) = 0 i.e. if and only if u is a solution to
the following problem

∇ξF (x,∇u) = 0 , u− w ∈ W 1,p
0 (Ω).

Denote A(x, ξ) = ∇ξF (x, ξ). It is not difficult to prove that
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1. A(x, ξ) is a Carathéodory function i.e. it is measurable in x and continuous in ξ,

2. |A(x, ξ)| ≤ b|ξ|p−1, A(x, ξ) · ξ ≥ a|ξ|p, for some a, b > 0,

3. (A(x, ξ)− A(x, η))(ξ − η) > 0 for all ξ 6= η a.e.

Thus we have proved the following result.

Theorem 98 Let F : Ω × IRn → IR be a function satisfying the conditions as above.
Given arbitrary w ∈ W 1,p(Ω), the functional

I(u) =
∫
Ω
F (x,∇u) , u ∈ W 1,p(Ω) (61)

has the unique minimizer in the class W 1,p
w (Ω) Moreover u is a minimizer of (61) in

W 1,p
w (Ω) is and only if u is a solution to the following problem

divA(x,∇u) = 0 , u− w ∈ W 1,p
0 (Ω) ,

where A(x, ξ) = ∇ξF (x, ξ) satisfiers the above conditions 1., 2., 3.

The result easily generalizes to the case of functionals defined on u ∈ W 1,p(Ω, IRm) i.e.,
when F : Ω× IRm×n → IR. We leave details to the reader.

We give not two important examples where similar functionals appear in the appli-
cations of the calculus of variations.

Conformal mappings. Let Ω ⊂ IRn be an open set. A diffeomorphism ϕ : Ω → IRn

of the class C1 is called conformal if it preserves the angles in Ω i.e. if the linear
transformation Dϕ(x) : IRn → IRn preserves the angles for all x ∈ Ω i.e., if the columns
of the matrix Dϕ(x) (as images of the orthonormal basis of IRn) are arthogonal and of
equal length, say λ(x) > 0, for all x ∈ Ω i.e. if

(Dϕ(x))TDϕ(x) = λ(x)2I for all x ∈ Ω.

It is easy to see that λ(x) = |Jϕ(x)|1/n and hence we get

Lemma 99 A C1 diffeomorphism ϕ : Ω→ IRn is conformal if and only if

(Dϕ(x))TDϕ(x) = |Jϕ(x)|2/nI ,

for all x ∈ Ω.

In what follows we will assume that conformal mappings preserve the orientation i.e.
Jϕ > 0 in Ω.

The following result is a celebrated theorem of Liouville (1850).
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Theorem 100 (Liouville) If n ≥ 3, then every conformal mapping ϕ : Ω → IRn of
the class C3 is a composition of a finite number of reflections in planes and in spheres.
By the reflection in the sphere Sn−1(a, r) we mean the mapping

ψ(x) =
r2(x− a)

|x− a|2
+ a.

The theorem does not hold when n = 2. Indeed, any holomorphic diffeomorphism is
conformal.

It was very essential in the Liouville’s proof that ϕ is at least of the class C3. It
took then about 100 years until Hartman has proved

Theorem 101 (Hartman) Liouville theorem is still true if we assume that ϕ ∈ C1.

Then Gehring and Reshetnyak replaced the requirement ϕ ∈ C1 by a weaker one: ϕ is
1-quasiconformal. The notion of the quasiconformality will be explained in one of the
further lectures.

We will sketch the proof of Hartman’s theorem using heavily the methods of calculus
of variations, nonlinear elliptic P.D.E. and Sobolev spaces.

Now we show a connection between conformal mappings and calculus of variations.
For f ∈ W 1,n(Ω, IRn) we set

In(f) =
∫
Ω
|∇f |n

As we have already seen, if f is a minimizer of In in the class W 1,n
w (Ω, IRn), where

w ∈ W 1,n(Ω, IRn), then f solves the following n-harmonic system

div (|∇f |n−2∇fi) = 0 , i = 1, 2, . . . , n.

Proposition 102 Let Ω ⊂ IRn be bounded and let ϕ ∈ C1(Ω, IRn) be conformal. Then

In(ϕ) = inf
ψ∈W 1,n

ϕ (Ω,IRn)
In(ψ),

and hence components of, ϕ are solutions to the n-harmonic system.

We do not prove the theorem. 2

Minimal surfaces. Another interesting example of the variational functional arise in
he theory of minimal surfaces. Assume that

Lecture 9
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The aim of this lecture is to develope the theory of Sobolev spaces on domains with
the irregular boundary.

Sobolev spaces on John domains. We say that a bounded domain Ω ⊂ IRn is a
John domain if there is a constant CJ ≥ 1 and a distinguished point x0 ∈ Ω so that each
point x ∈ Ω can be joined to x0 (inside Ω) by a curve (called John curve) γ : [0, 1]→ Ω
such that γ(0) = x, γ(1) = x0 and

dist (γ(t), ∂Ω) ≥ C−1
J |x− γ(t)| ,

for every t ∈ [0, 1].

Lemma 103 Every bounded Lipschitz domain is John. 2

One can easily construct John domains with the fractal boundary of the Hausdorff
dimension strictly greater than n−1 (for example two-dimensional von Koch snowflake
domain). Thus the class of John domains is much larger than the class of Lipschitz
domains.

The bove definition is slightly different than the usual definition of the John domain,
but it is equivalent.

The following lemma follows from the results of Lecture 2. Since we present different
approach to Sobolev inequalities we prove it one more time using different argument.

Lemma 104 Let u ∈ C1(B), where B ⊂ IRn is a ball of radius r. Then for 1 ≤ p <∞(∫
B
|u− uB|p dx

)1/p

≤ C(n, p)r
(∫

B
|∇u|p dx

)1/p

.

Proof. We can assume that B is centred at the origin. For x, y ∈ B we have

|u(y)− u(x)| =

∣∣∣∣∣
∫ 1

0

d

dt
u(x+ t(y − x)) dt

∣∣∣∣∣ =
∣∣∣∣∫ 1

0
〈∇u(x+ t(y − x)), y − x〉 dt

∣∣∣∣
≤ 2r

∫ 1

0
|∇u(x+ t(y − x))| dt.

Hence integrating with respect to y and then applying Hölder’s inequality yield

|u(x)− uB| ≤ Cr
∫ 1

0

∫
B
|∇u(x+ t(y − x))| dy dt

≤ Cr
(∫ 1

0

∫
B
|∇u(x+ t(y − x))|p dy dt

)1/p

.

Now ∫
B
|u− uB|p ≤ C

rp

|B|

∫ 1

0

∫
B

∫
B
|∇u(x+ t(y − x))|p dy dx dt.
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Changing variables (x, y) ∈ B ×B to (ξ, η) ∈ B × 2B by the formula

ξ = x+ t(y − x), η = y − x,

we easily see that the Jacobian of the transformation is one and hence∫
B
|u− uB|p ≤ C

rp

|B|

∫ 1

0

∫
2B

∫
B
|∇u(ξ)|p dξ dη dt = Cr

∫
B
|∇u(ξ)|p dξ.

2

The following is a generalizetion of Lemma 25.

Theorem 105 Let Ω ⊂ IRn be a John domain. Then for every u ∈ C1(Ω) and all
x ∈ Ω

|u(x)− uΩ| ≤ C(CJ , n)
∫
Ω

|∇u(z)|
|x− z|n−1

dz.

Proof. Let x0 ∈ Ω be a central point. Let B0 = B(x0, dist (x0, ∂Ω)/4). We will prove
that there is a constant M = M(CJ , n) > 0 such that to every x ∈ Ω there is a sequence
of balls (chain) Bi = B(xi, ri) ⊂ Ω, i = 1, 2, . . . such that

1. |Bi ∪Bi+1| ≤M |Bi ∩Bi+1|, i = 0, 1, 2, . . .

2. dist (x,Bi) ≤Mri, ri → 0, xi → x as i→∞,

3. No point of Ω belongs to more than M balls Bi.

To prove it assume first that x is far enough from x0, say x ∈ Ω \ 2B0. let γ be a John
curve that joins x with x0. We construct a chain of balls as follows.

All balls in the chain are centred on γ. Ball B0 is already defined. Assume that
balls B0, . . . , Bi are defined. Starting from the center xi of Bi we trace along γ toward
x untill we leave Bi for the last time. Denote by xi+1 the point on γ when it happends
and define Bi+1 = B(xi+1, |x− xi+1|/4CJ).

The property 1. and the inequality dist (x,Bi) ≤ Cri in 2. follows form the fact
that consecutive balls have comparable radii and that the radii are comparable to the
distance of centers to x.

To prove 3. suppose that y ∈ Bi1 ∩ . . .∩Bik . Observe that the radii of the balls Bij ,
j = 1, 2, . . . , k are comparable to |x − y|. Hence it follows from the construction that
distances between centers of the balls Bij are comparable to |x − y|. The number of
the points in IRn with pairwise comparable distances is bounded i.e. if z1, . . . , zN ∈ IRn

satisfy c−1r < dist (zi, zj) < cr for i 6= j, then N ≤ C(c, n). Hence k is bounded by a
constant depending on n and CJ , so 3. follows.
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Now 3. easily implies that ri → 0 and hence xi → x as i → ∞, which completes
the proof of 2.

The case x ∈ 2B0 is easy and we leave it to the reader.

Since uBi
=
∫
Bi
u→ u(x) as i→∞ we get

|u(x)− uB0| ≤
∞∑
i=0

|uBi
− uBi+1

|

≤
∞∑
i=0

|uBi
− uBi∩Bi+1

|+ |uBi+1
− uBi∩Bi+1

|

≤
∞∑
i=0

|Bi|
|Bi ∩Bi+1|

∫
Bi

|u− uBi
|+ |Bi+1|
|Bi ∩Bi+1|

∫
Bi+1

|u− uBi+1
|

(propery 1.)

≤ C
∞∑
i=0

∫
Bi

|u− uBi
|

(Lemma 104)

≤ C
∞∑
i=0

∫
Bi

|∇u(z)|
rn−1
i

dz.

Observe that 2. implies that for z ∈ Bi there is |x − z| ≤ Cri and hence 1/rn−1
i ≤

C/|x− z|n−1. Thus

|u(x)− uB0| ≤ C
∞∑
i=0

∫
Bi

|∇u(z)|
|x− z|n−1

dz ≤ C
∫
Ω

|∇u(z)|
|x− z|n−1

dz. (62)

The last inequality follows form 3. Now it is easy to complete the proof. Since

|u(x)− uΩ| ≤ |u(x)− uB0|+ |uB0 − uΩ|, (63)

it remainds to prove the estimate for |uB0 − uΩ|. We have

|uB0−uΩ| ≤
∫
Ω
|u−uB0| ≤ C

∫
Ω

∫
Ω

|∇u(z)|
|x− z|n−1

dx dz ≤ C|Ω|−(n−1)/n
∫
Ω
|∇u(z)| dz . (64)

The last inequality follows form the following standard argument∫
Ω

dx

|x− z|n−1
≤ |Ω|−1

∫
B

dx

|x− z|n−1
= C|Ω|−(n−1)/n, (65)

where B is a ball centred at z with |B| = |Ω|. By the John condition we have

C|Ω|1/n ≥ dist (x0, ∂Ω) ≥ C−1
J |x− x0|.

Taking the supremum over x ∈ Ω yields

diam Ω ≤ C(n,CJ)|Ω|1/n,
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and hence

|Ω|−(n−1)/n ≤ C

|x− z|n−1
,

for all z ∈ Ω. This and (64) gives

|uB0 − uΩ| ≤ C
∫
Ω

|∇u(z)|
|x− z|n−1

dz. (66)

Now the theorem follows form the estimates (63), (62) and (66). The proof is complete.
2

Observe that te above result easily implies the Poincaré inequality

Theorem 106 (Poincaré inequality) Let Ω ⊂ IRn be a John domain and u ∈
C1(Ω). Then for 1 ≤ p <∞(∫

Ω
|u− uΩ|p

)1/p

≤ C(n, p, CJ)|Ω|1/n
(∫

Ω
|∇u|p

)1/p

.

Proof. It is a direct consequence of the above theorem and Lemma 27. 2

Sobolev embedding theorem. The aim of this section is the proof of the following
theorem.

Theorem 107 If Ω ⊂ IRn is a John domain, and 1 ≤ p < n, then(∫
Ω
|u− uΩ|p

∗
)1/p∗

≤ C(CJ , n, p)|Ω|1/n
(∫

Ω
|∇u|p

)1/p

,

for u ∈ W 1,p(Ω), where p∗ = np/(n− p).

In the proof we will need the following lemma whose proof goes back to Santalo. I
learned to form Jan Malý.

Lemma 108 Let Ω ⊂ IRn be open and g ∈ L1(Ω). Then

sup
t>0
|{x ∈ IRn : IΩ

1 g(x) > t}|tn/(n−1) ≤ C
(∫

Ω
|g|
)n/(n−1)

.

Proof. Replacing g by g/t we may assume that t = 1. let E = {IΩ
1 g > 1}. Then

|E| ≤
∫
E
IΩ
1 g =

∫
Ω

∫
E

dx

|x− z|n−1
g(z) dz ≤ C|E|1/n

∫
Ω
|g|.

The last inequality follows from a standard trick as in (65). The proof is complete. 2

Lemma 108 and Lemma 105 imply
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Lemma 109 If Ω ⊂ IRn is a John domain and u ∈ W 1,1(Ω), then

sup
t>0
|{x ∈ Ω : |u(x)− uΩ| > t}|tn/(n−1) ≤ C(CJ , n)

(∫
Ω
|∇u|

)n/(n−1)

.

Inequalities stated in the above two lemmas might seem strange, so we explain their
meaning now.

Since our comments will be of a general nature, we assume for a while that we deal
with functions defined on a space equipped with a σ-finite measure µ.

If u ∈ Lp(X), 1 ≤ p <∞, then it follows from Chebyschev’s inequality that

sup
t>0

µ({x ∈ X : |u(x)| > t})tp ≤
∫
X
|u|p dµ.

This suggests the following definition.

We say that a measurable function u belongs to the Marcinkiewicz space Lpw(X)
(weak Lp) if there is m ≥ 0 such that

sup
t>0

µ({x ∈ X : |u(x)| > t})tp ≤ m. (67)

hence Lp(X) ⊂ Lpw(X). In general, the space Lpw is larger that Lp. Indeed, x−1 ∈
L1
w(IR) \ L1(IR). However we have the following

Lemma 110 If µ(X) < ∞ then Lpw(X) ⊂ Lq(X) for all 0 < q < p. Moreover if u
satisfies (67) then

‖u‖Lq(X) ≤ 21/q

(
qm

p− q

)1/p

µ(X)1/q−1/p. (68)

Proof. In the proof we need the following

Lemma 111 (Cavalieri pronciple) If q > 0 and u is measurable, then∫
X
|u|q dµ = q

∫ ∞

0
tq−1µ(|u| > t) dt.

Proof. Apply Fubini’s theorem to X × [0,∞). 2

Now fix t0 > 0. We use estimates µ(|u| > t) ≤ µ(X) for t ≤ t0 and µ(|u| > t) ≤ mt−p

for t > t0. We get∫
X
|u|q dµ ≤ q

(∫ t0

0
tq−1µ(X) dt+m

∫ ∞

t0
tq−p−1 dt

)
= tq0µ(X) +

qm

p− q
tq−p0 .

Now the inequality (68) follows by substitution t0 = (qm/(p− q))1/pµ(X)−1/p. 2
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Hence Lemma 109 implies only that for every q < n/(n− 1)

(∫
Ω
|u− uΩ|q dx

)1/q

≤ C|Ω|1/n
∫
Ω
|∇u| . (69)

Thus it is surprising that one can actually take q = n/(n−1) in (69) as Theorem 107
says.

First we will prove the following modified version of the theorem

Lemma 112 Let Ω ⊂ IRn be a John domain and let u ∈ W 1,p(Ω), 1 ≤ p < n. If
|{u = 0}| ≥ |Ω|/2, then

(∫
Ω
|u|p∗

)1/p∗

≤ C(CJ , n, p)
(∫

Ω
|∇u|p

)1/p

.

em Proof. For a function v and 0 < t1 < t2 < ∞ we define the truncation between
levels t1 and t2 as

vt2t1 = min{max{0, v − t1}, t2 − t1}} .

Then obviously vt2t1 ∈ W 1,p if v ∈ W 1,p and

∇vt2t1 = ∇uχ{t1<v≤t2} a.e.

Assume first that p = 1. We have

∫
Ω
|u|n/(n−1) ≤

∞∑
k=−∞

2kn/(n−1)|{2k−1 < |u| ≤ 2k}|

≤
∞∑

k=−∞
2kn/(n−1)|{|u|geq2k−1}|

≤
∞∑

k=−∞
2kn/(n−1)|{|u|2k−1

2k−2 ≥ 2k−2}| (70)

= ♦

Lemma 113 Let µ(X) < ∞. If w is a measurable function such that µ({w = 0}) ≥
µ(X)/2, then for every t > 0

µ({|w| ≥ t}) ≤ 2µ({|w − wX | ≥ t/2}) .

We leave the proof as an exercise. 2
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In our situation wk = |u|2k−1

2k−2 is nonnegative and vanishes on at least on half of Ω.
Hence applying the lemma to (70) and then applying Lemma 109 we get

♦ ≤
∞∑

k=−∞
2kn/(n−1)

(
2k−3

)−n/(n−1)
2
∣∣∣{|wk − wkΩ| ≥ 2k−3

}∣∣∣ (2k−3
)n/(n−1)

≤ C
∞∑

k=−∞

(∫
Ω
|∇wk|

)n/(n−1)

= C
∞∑

k=−∞

(∫
{2k−2<|u|≤2k−1}

|∇u|
)n/(n−1)

≤ C
(∫

Ω
|∇u|

)n/(n−1)

.

Hence Lemma 112 follows when p = 1. Now assume that 1 < p < n. Let v =
|u|p(n−1)/(n−p). Then |v|n/(n−1) = |u|p∗ and hence applying the case p = 1 of the lemma
yields ∫

Ω
|u|p∗ =

∫
Ω
|v|n/(n−1) ≤ C

(∫
Ω
|∇v|

)n/(n−1)

. (71)

Observe that

|∇v| = p(n− 1)

n− p
|u|n(p−1)/(n−p)|∇u| .

Placing it in (71) and applying Hölder’s inequality yields the desired inequality. 2

Proof of Theorem 107. Choose b ∈ IR such that

|{u ≥ b}| ≥ |Ω|/2 and |{u ≤ b}| ≥ |Ω|/2 .

Then functions v+ = max{u− b, 0} and v− = min{u− b, 0} satisfy the assumptions of
Lemma 112 and hence (∫

Ω
|u− b|p∗

)1/p∗

≤ C
(∫

Ω
|∇u|p

)1/p

.

Now the theorem follows from the following obsevation

Lemma 114 If µ(X) <∞ and q ≥ 1, then

inf
c∈IR

(∫
X
|u− c|q dµ

)1/q

≤
(∫

X
|u− uX |q dµ

)1/q

≤ 2
∫
c∈IR

(∫
X
|u− c|q dµ

)1/q

.

Proof. Apply Hölder’s inequality. 2

The proof of the theorem is complete 2

Generalized Rellich–Kondrachov theorem. Our next aim is a generalization of
the Rellich–Kondrachov theorem to almost arbitrary domain.
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General extension theorem.

Lecture 10

Beyond classical Sobolev spaces. As we have seen, the classical theory of Sobolev
spaces has numerous applications to calculus of variations, linear and nonlinear partial
differential equations and geometry. There are still another applications like those to
algebraic topology that we did not discuss here because of the lack of the time.

Although the language of classical Sobolev spaces is quite universal it is sometimes
not general enough. We will show now few examples that will motivate generalization
of the Sobolev space to the setting of metric spaces that will be given later on.

Graphs. Let Γ = (V,E) be a graph, where V is the vertex set and E the set of
edges. We say that x, y ∈ V are neighbours if they are joined by an edge; we denote this
by x ∼ y. Assume that the graph is connected in the sense that any two vertices can
be connected by a sequence of neighbours. We let the distance between two neighbours
to be 1. This induces a geodesic metric on V denoted by %. The graph is endowed
with the counting measure. The measure of a set E ⊂ V is simply the number V (E) of
elements of E. For a ball B = B(x, r) we use also the notation V (B) = V (x, r). The
length of the gradient of a function u on V at a point x is defined by

|∇Γu|(x) =
∑
y∼x
|u(y)− u(x)|.

Many graphs have the following two properties

1. The counting measure is doubling i.e., there is a cnstant Cd ≥ 1 such that

V (x, 2r) ≤ CdV (x, r), (72)

for every x ∈ V and r > 0.

2. The following inequality holds

1

V (B)

∑
x∈B
|u(x)− uB| ≤ Cr

(
1

V (σB)

∑
x∈σB

|∇Γu|p(x)

)1/p

, (73)

where C > 0, σ ≥ 1 are fixed constants and B is any ball.

Observe that inequality (73) is similar to the Poincaré inequality. Although one might
think the more natural counterpart of the Poincaré inequality is(

1

V (B)

∑
x∈B
|u(x)− uB|p

)1/p

≤ Cr

(
1

V (B)

∑
x∈B
|∇Γu|p

)1/p

, (74)
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inequality (73) seems weaker and hence it is more convenient to require (73). Actually
one can prove that inequalities (73) and (74) are equivalent. We will cone back to this
question later, in a more general setting.

We may ask whether a Sobolev–Poincaré inequality holds as well. This would be
an inquality of the form(

1

V (B)

∑
x∈B
|u(x)− uB|q

)1/q

≤ Cr

(
1

V (σB)

∑
x∈σB

|∇Gu|p(x)

)1/p

, (75)

with some q > p ≥ 1. If such inequality is true, then how to determine the best
possible exponent q? Can we replace σB on the right hand side by B? What would be
a counterpart of the Rellich–Kondrachov theorem?

One can define the notion of the harmonic function on the graph. There are two
possible approaches. The first one is based on the so called mean value property:

We say that u : V → IR is harmonic if for every x ∈ V ,

u(x) =
1

d(x)

∑
y∼x

u(y), (76)

where d(x) is a number of neighbours of x.

The other approach is based on a version of the Dirichlet principle: u : V → IR is
harmonic if it locally minimizes the Dirichlet sum

E(u) =
∑
x∈V
|∇Γu|2(x). (77)

This is to say that if v : V → IR is a function which coincides with u outside a finite
set Y ⊂ X, then ∑

x∈Y
|∇Γv|2 ≥

∑
x∈Y
|∇Γu|2.

Observe that according to this definition, if u locally minimizes the Dirichlet sum,
then the series (77) need not converge. It is not difficult to prove that the above two
definitions of a harmonic function are equivalent. The mean value property is then a
version of the Euler–Lagrange equation for the energy functional (77). We leave it as
an exercise.

There are many questions that arise right away. Can the above mentioned Poincaré
or Sobolev-Poincaré type inequalties — if true — be used to prove some properties of
harmonic functions on graphs like for example Harnack inequality?

A sample of such result is the following theorem due to Holopainen and Soardi.
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Theorem 115 (Harnack inequality) Suppose that the graph Γ satisfies both, the
doubling property (72) and the Poincaré inequality (73) with p = 2. Then there is a
constant C ≥ 1 such that

max
x∈B

u(x) ≤ C min
x∈B

u(x),

whenever u is a positive harmonic function in 12B.

The doubling property along with the Poincaré inequality are really crucial for the
proof of the Harnack inequality.

Corollary 116 (Liouville Theorem) Under the above assumptions about the graph
any bounded harmonic function is constant.

Proof. Replacing u by supV u − u we may assume that infV u = 0. Hence Harnack
inequality implies that supV u = 0, and thus u is constant. 2

The proof of the Harnack inequality involves a Sobolev–Poincaré inequality (75)
with q > p = 2. Thus in particular one has to show that Poincaré inequality (73) for
p = 2 together with (72) implies such Sobolev–Poincaré inequality. We will come back
to the question later.

Although there is an obvious analogy between inequalities (73), (74), (75) and the
classical Poincaré and Sobolev–Poincaré inequalities, they cannot be deduced form the
classical results.

A very important class of graphs is given by finite generated groups. Let G be a
group with generators {g1, . . . , gn}. This is to say every element of G can be represented
as g±1

i1 g
±1
i2 · · · g

±1
ik

. We associate a graph with G as follows. We identify the vertex set
V with the set of all elements of the group G. Then we connect two vertices x1, x2 ∈ V
by an edge if and only if y = g±1

i x for some generator gi. Inequalities of Sobolev and
Poincaré type play the essential role in the analysis and geometry of finite generated
groups.

Upper gradient. Now we turn to another class of examples The gradinet of a Lipschitz
function u ∈ Lip (Ω) satisfies the inequality

|u(γ(b))− u(γ(a))| ≤
∫ b

a
|∇u(γ(t))| dt,

whenever γ : [a, b] → Ω is 1-Lipschitz curve i.e. |γ(t) − γ(s)| ≤ |t − s| for all a ≤ s ≤
t ≤ b, or equivalently γ is absolutely continuous with |γ̇| ≤ 1 a.e.

Moreover |∇u| is the smallest among all locally integrable functions such that

|u(γ(b))− u(γ(a))| ≤
∫ b

a
g(γ(t)) dt, for all 1-Lipschtz curves γ. (78)

Namely we have
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Lemma 117 If u is a Lipschitz function defined on an open set Ω ⊂ IRn, then any
measurable function g such that g ≥ |∇u| everywhere satisfies (78). On the other hand
if g ∈ Lp(Ω) and u ∈ Lp(Ω) satisfy (78), then u ∈ W 1,p(Ω) and g ≥ |∇u| a.e.

Proof. The first part is obvious. The second part follows from the ACL characterization
of the Sobolev space that was discussed during the second lecture. 2

The above lemma motivates the following generalization of the notion of gradient
to the setting of metric spaces.

Let (X, d, µ) be a metric space (X, d) equipped with a Borel measure µ. Till the
end of the lectures we will assume that the measure µ of any ball is strictly positive
and finite.

Following Heinonen and Koskela we say that a Borel function g : X → [0,∞] is
an upper gradinet of another Borel function u : X → IR if for every 1-Lipschitz curve
γ : [a, b]→ X there is

|u(γ(b))− u(γ(a))| ≤
∫ b

a
g(γ(t)) dt. (79)

Note that g ≡ ∞ is an upper gradient of any Borel function u. A more clever example
is provided by the following result.

Lemma 118 If u is a locally Lipschitz function on X, then |∇+u|(x) =
lim supy→x |u(y)− u(x)|/d(x, y) is an upper gradient of u.

Proof. Let γ : [a, b] → Ω be 1-Lipschitz. The function u ◦ γ is Lipschitz and hence
differentiable a.e. It easily follows that |(u ◦ γ)′(t)| ≤ |∇+u(γ(t))| whenever u ◦ γ is
differentiable at t. Hence

|u(γ(b))− u(γ(a))| ≤
∫ b

a
|(u ◦ γ)′(t)| dt ≤

∫ b

a
|∇+u(γ(t))| dt.

The proof is complete. 2

We may ask then whether on a given space (X, d, µ) a Poincaré type inequality
holds between u and its upper gradient.

We say that the space (X, d, µ) supports p-Poincaré inequality, 1 ≤ p <∞ if there
exists C > 0 and σ ≥ 1 such that every pair (u, g), of a continuous function u and its
upper gradient g satisfies the following Poincaré type inequality∫

B
|u− uB| dµ ≤ Cr

(∫
σB
gp dµ

)1/p

for all balls B ⊂ X. (80)

If the space supports 1-Poincaré inequality, then it supports p-Poincaré inequality for
all 1 ≤ p < ∞ simply by the Hölder inequality. Obviously IRn supports 1-Poincaré
inequality.
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As we will see, sometimes it is easier to prove inequality like (80) with σ > 1, than
that with σ = 1. For this reason we allow σ > 1 in the above definition.

If the space supports the p-Poincaré inequality, then it provides a lot of information
about the geometry of the space. It says in a quantitative way that there are a lot of
rectifiable curves. Indeed, assume that there are no rectifiable curves at all in the space
(X, d, µ) (this is for example the case when we deal with a metric space associated with
a graph). Then the function g ≡ 0 is an upper gradient of any continuous function,
because all the 1-Lipschitz curves γ : [a, b] → X are constant. This, however, means
(80) cannot be true! Thus, in particular, no graph supports p-Poincaré inequality.

We say that the space (X, d, µ) is Q-regular Q > 0 if it is a complete metric space
and C1r

Q ≤ µ(B(x, r)) ≤ C2r
Q, whenever x ∈ X and r < diamX.

Heinonen and Koskela developped the theory of quasiconformal mappings between
metric spaces that are Q-regular for some Q > 1, support the Q-Poincaré inequality
and that every two points x, y ∈ X can be connected by a curve whose length is less
than or equal to Cd(x, y).

It is usually a very difficult problem to prove that a metric space supports the
p-Poincaré inequality (if it does). We state one such result due to Semmes.

Let X be a connected Q-regular metric space, Q ≥ 2 integer, that is also Q-
dimensional orientable topological manifold. Assume that X is locally linearly con-
tractible in the following sense: there is C ≥ 1 such that for every x ∈ X and every
r ≤ C−1diamX, the ball B(x, r) can be contracted to a point inside B(x,Cr).

Theorem 119 Under the above assumptions the space supports 1-Poincaré inequality.

The proof of the theorem is more than 100 pages long! 2

Vector fields. Classical Sobolev spaces were very usefull in studing existence and
regularity properties of solutions to elliptic equations of the form

n∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
= 0, (81)

provided the uniform ellipticity condition is satisfied

n∑
i,j=1

aij(x)ξiξj ≥ C|ξ|2. (82)

Weak solutions to (81) belong to W 1,2
loc (Ω). This class of equations include for example

the Laplace equation. Now loot at

∂2u

∂x2
+ x2∂

2u

∂y2
= 0 (83)
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This equation can be written in the form (81), but the condition (82) is not satisfied.
For this reason the methods developped to deal with equation (81) do not work. It
is possible, however, to adopt them, but this requires a generalization of the Sobolev
space. Roughly speaking one has to deal with the Sobolev space on a metric space
where the metric reflects the structure of the operator (83).

Equation (83) is a special case of a large class of sub-Laplace operators that we next
describe.

Let X1, X2, . . . , Xk be vector fields defined on Ω ⊂ IRn with real, Lipschitz contin-
uous coeficients. Each such vector field can be identified with a first order differential
operator

Xiu = 〈Xi,∇u〉.

We will write Xu = (X1u, . . . , Xku), |Xu| = (
∑
i |Xiu|2)1/2. By X∗

i we will denote a
formal adjoint of Xi that is X∗

i is defined by the identity∫
Ω
uXiv =

∫
Ω

(X∗
i u)v , ∀u, v ∈ C∞

0 (Ω) .

If Xi =
∑
j cij(x)∂/∂xj, then the integration by parts yields X∗

i = −Xi + fi, where
fi = −∑j ∂cij/∂xj.

Now the generalized sub-Laplace operator is defined as

LXu = −
∑
i

X∗
iXiu.

Observe that equation (83) is of the form LXu = 0, where X1 = ∂/∂x, X2 = x∂/∂y.

A class of generalized sub-Laplace operators is to large and one cannot prove any-
thing about the regularity of the sloutions to the equation LXu = 0. Indeed, if all the
coefficients of Xi’s are equal to zero, than any function is a solution to the equation
LXu = 0!

What do we have to assume about Xi’s to have a resonable regularity theory for
the solutions to LXu = 0? Trying to answer the question we will have to deal with
Poincaré and Sobolev inequalities on metric spaces, where the metric will be induced
by the geometry of the vector fields.

Carnot–Carathéodory metric. Now we will show how to associate a metric with a
given family of vector fields. Let, as before, X = (X1, . . . , Xk) be a family of Lipschitz
continuous vector fields in Ω ⊂ IRn.

Willing to prove estimates for solutions to LXu = 0 we would like to use as a
technical tool Sobolev–Poincaré inequalities of the form(∫

G
|u− uG|q dx

)1/q

≤ C
(∫

G
|Xu|p dx

)1/p

(84)
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with q > p ≥ 1 for a sufficently large class of domains G, or at, least a weaker, Poincaré
inequality (i.e. p ≥ q = 1). How does one prove Poincaré inequality for the pair u,
|Xu|? The natural approach is to bound u by integrals of |Xu| along curves and then
average resulting one-dimensional integrals to obtain desired Poincaré inequality.

In order to have such bounds for u in terms of integrals of |Xu| one would like to
know that |Xu| is an upper gradient of u. Unfortunately it is seldom the case.

For example if we have only one vector field in IR2, X1 = ∂/∂x1 and γ(t) = (0, t),
u(x1, x2) = x2, then |u(γ(1)) − u(γ(0))| = 1, while |Xu| ≡ 0, so |Xu| is not an upper
gradient of u. It is not an upper gradient even up to a constant factor. Roughly
speaking the problem is caused by the fact that γ̇ is not spanned by Xj’s.

There is a brilliant idea that allows one to avoid the problem by introducing a new
metric (that is described below) in Ω that makes |Xu| an upper gradient of u on a new
metric space. The metric is such that it restricts the class of 1-Lipschitz curves to those
for which γ̇ is a linear combinatin of Xj’s. To be more precise it is not always a metric
as it allows the distance to be equal to infinity.

We say that an absolutely continuous curve γ : [a, b] → Ω is admissible if there
exist measurable functions cj(t), a ≤ t ≤ b satisfying

∑k
j=1 cj(t)

2 ≤ 1 and γ̇(t) =∑k
j=1 cj(t)Xj(γ(t)).

Note that if the vector fields are not linearly idependent at a point, then the coef-
ficients cj are not unique.

Lemma 120 Every curve 1-Lipschitz with respect to ρ is Lipschitz with respect to the
Euclidean metric.

Proof. It follows from the Schwartz inequality. 2

Then we define the distance ρ(x, y) between x, y ∈ Ω as the infimum of those T > 0
such that there exists an admissible curve γ : [0, T ]→ Ω with γ(0) = x and γ(T ) = y.
If there is no admissible curve that joins x and y, then we set ρ(x, y) =∞.

Note that the space (Ω, ρ) splits into a (possibly infinite) family of metric spaces
Ω =

⋃
i∈I Ai, where x, y ∈ Ai if and only if x and y can be connected by an admissible

curve. Obviously (Ai, ρ) is a metric space and the distance between distinct Ai’s equals
infinity.

The distance function ρ is given many names in the literature. We will use the name
Carnot–Carathéodory distance. The space equipped with the Carnot–Carathéodory
distance is called Carnot–Carathéodory space.

Proposition 121 The mapping γ : [0, T ] → Ω is admissible if and only if it is 1-
Lipschitz with respect to the distance ρ i.e. ρ(γ(s), γ(t)) ≤ |s− t|.
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The implication ⇒ follows directly form the definition of ρ. The opposite implication
is more difficult and we do not prove it. 2

The following two results generalize Lemma 117.

Proposition 122 |Xu| is an upper gradient of u ∈ C∞(Ω) on the space (Ω, ρ).

The space (Ω, ρ) is not necessarely a metric space since the distance ρ can be euqal
to infinity. However the definition of upper gradient can be generalized (without any
changes) to such degenerate metric spaces.

Proof. Let γ : [a, b] → (Ω, ρ) be 1-Lipschitz. Then γ is admissible and hence by
Lemma 120 γ is Lipschitz. Now u ◦ γ is Lipschitz and thus

|u(γ(b))− u(γ(a))| =
∣∣∣∣∣
∫ b

a
〈∇u(γ(t)), γ̇(t)〉 dt

∣∣∣∣∣ ≤
∫ b

a
|Xu(γ(t))| dt.

The inequality follows from the fact that γ is admissible and from the Schwartz in-
equality. The proof is complete. 2

The following result is much more difficult.

Theorem 123 Let 0 ≤ g ∈ L1
loc(Ω) be an upper gradient of a continuous function u

on (Ω, ρ). Then the distributional derivatives Xju, j = 1, 2, . . . , k are locally integrable
and |Xu| ≤ g a.e.

Now we come back to the question posed before: How does one prove Poincaré inequal-
ity of the type (84) with q = 1? The idea is the following: We estimate oscillations of
u over admissible curves by integrals of |Xu| and then the Poincaré inequality follows
by averaging resulting line integrals. Thus the above idea — if it works — leads to
inequalities of the type ∫

B̃
|u− u

B̃
| dx ≤ Cr

(∫
σB̃
|Xu|p dx

)1/p

, (85)

where B̃ is a ball with respect ot the distance B̃.

The idea seems simple but in general it is very difficult to handle it. In the next
lecture we will show some examples of vector fields for which the Poincaré inequality
(85) holds.

Lecture 11

The Hörmander condition. During the last lecture we defined so called Carnot–
Carathéodory distance associated with a given system of vector fields. In general this
need not be a metric as the distance between two points can be equal to infinity.
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We describe now a large class of examples where both, the C.-C. distance is a
genuine metric and inequlaities like (85) are true. This is the class of vector fields
satisfying so called Hörmander’s condition.

Let Ω ⊂ IRn be a domain and let X = (X1, X2 . . . , Xk) be vector fields defined
in Ω with real, C∞ smooth coefficients. We say that the vector fields X satisfy
the Hörmander condition if there is a positive integer d such that commutators of
X1, . . . , Xk up to the length d span the tangent space IRn at every point x ∈ Ω.

The commutator of two vector fields X, Y is the differential operator defined by
[X, Y ] = XY = Y X. One can easily prove that the second order differentiations cancel
and [X,Y ] is a homogeneous first order differential operator i.e. it is a vector field.

The condition that commutators span IRn means that for every x ∈ Ω the vectors

X1(x), . . . , Xk(x), [Xi1 , Xi2 ](x), . . . [Xi1 , [Xi2 , [. . . , Xid ], . . .]](x)

span IRn

Example. The vector fields X1 = ∂/∂x, X2 = xd∂/∂y, d-positive integer, span IR2

everywhere except the line x = 0. Now compute

[X1, X2] =
∂

∂x

(
xd

∂

∂y

)
− xd ∂

∂y

(
∂

∂x

)
= dxd−1 ∂

∂y
.

Hence by induction we see that taking a commutator of length d + 1 (d fields X1 and
one field X2) we get d!∂/∂y. Thus commutators of length d+ 1 span IR2 at every point
of IR2. 2

Let X1, . . . Xk satisfy the Hörmander condition. Then the operator LX =
−∑k

i=1X
∗
iXi is called sub-Laplace operator.

Solutions to sub-Laplace operator posseses many properties similar to those of the
solutions to Laplace operator: they are C∞ smooth and they satisfy a version of the
Harnack inequliaty.

In the case of vecotr fields satisfying Hörmander’s condition, the Carnot–
Carathéodory distance is a genuine metric. The following result is a combination of
efforts of many people including Carathéodory, Chow, Rashevsky, Fefferman, Phong,
Lanconelli, Nagel, Stein, Wainger and many others.

In what follows by B̃ we will denote a ball with respect to the C.−C. distance. We
will call B̃ metric ball.

Theorem 124 Given a domain Ω ⊂ IRn and a system of vector fields satisfying
Hörmander’s condition in Ω. Then any two points in Ω can be connected by a piecewise
smooth admissible curve and hence the C.-C. distance is a genuine metric. Moreover
for every compact set K ⊂ Ω there exist constants C1 and C2 such that

C1|x− y| ≤ ρ(x, y) ≤ C2|x− y|1/d,
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for every x, y ∈ K. There also exist r0 > 0 and C ≥ 1 such that

|B̃(x, 2r)| ≤ C|B̃(x, r)|,

whenever x ∈ K, r ≤ r0 and B̃ is the ball in the metric ρ.

The second inequality states that the Lebesgue measure is locally doubling with respect
to the C.-C. metric.

The Hörmander condition is so good that the Poincaré inequality holds. This is a
result due to Jerison.

Theorem 125 (Jerison) Let X = (X1, . . . , Xk) be vector fields satisfying
Hörmander’s condition in Ω. Then for every compact set K ⊂ Ω there are constants
C > 0 and r0 > 0 such that for all u ∈ C∞(2B̃)∫

B̃
|u− u

B̃
| dx ≤ Cr

∫
2B̃
|Xu| dµ, (86)

whenever B̃ is a metric ball centred at K and of radius r ≤ r0.

Then Jerison proved that 2B̃ on the right hand side can be replaced by B̃. Actually
we will prove later a stronger result: inequality (86) has the self improving property in
a sense that if the Poincaré inequalities (86) hold on every metric ball, then the family
of Sobolev–Poincaré inequalities(∫

B̃
|u− u

B̃
|q dx

)
≤ Cr

(∫
B̃
|Xu|p dx

)1/p

, (87)

for any p ≥ 1 and some q > p hold on any metric ball as well. Similar phenomenon has
been mentioned in the context of inequalities on graphs. In the next lecture we will
prove the self improving property in a very general setting of metric spaces. This will
cover the cases of graphs, vector fields, and many others.

As we have already mentioned in the setting of graphs, the crucial technical tools
employed in the proof of the Harnack inequality were the doubling property and the
Poincaré inequality. Then it was also essential that both the doubling and the Poincaré
imply the Sobolev–Poincaré inequality. We meet the same phenomenon in the context
of Hörmander’s vctor fields. Thus mimiking the usual proof of the Harnack inequality
we obtain

Theorem 126 (Harnack inequality) There is C > 0 such that if u is a positive
solution to LX = 0 in 2B̃ ⊂⊂ Ω, then

sup
B̃

u ≤ C inf
B̃

u.
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Actually one can prove the Harnack inequality for generalized sub-Laplace equations
(i.e. when the vector fields do not necessarely satisfy Hörmander’s condition), provided
the doubling condition and the Poincaré inequality holds.

Carnot groups. Now we will discuss a special case of vecotr fields satisfying
Hörmander’s condition that have a simple structure but still provide a lot of non-
trivial examples. Those vector fields are left invariant vector fields on the so called
Carnot group (stratified Lie group.

Recall that Lie G group is a smooth manifold with such a group structure that
the multiplication and taking an inverse element are smooth mappings. The neutral
element is usually denoted by e and the group law by a multiplicative notation gh.

If g ∈ G, then lg(h) = gh, the left multiplication by g is a diffeomorphism. We say
that a vector field X on G is left invariant is for every g ∈ G, X(g) = Dlg(e)X(e).
Thus all the left invariant vector fields can be identified with the tangent space to G at
e. We use notation g = TeG and writting g we mean the identification of the tangent
space with all the left invariant vector fields.

The comutator of two vector fields X and Y is defined by [X, Y ] = XY −Y X. One
can prove that again this is a vecotr field and that if the vecor fields X and Y were left
invariant then [X, Y ] is left invariant as well. Thus the comutator induces Lie algebra
structure in g: [·, ·] : g× g→ g with the following properties:

[X, Y ] = −[Y,X], [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

We say that a measure µ on G is a left invariant Haar measure if the left multiplication
by g is a measure preserving transformation for all g. The left invariant Haar measure
is unique up to a constant factor.

The exponential mapping exp : g → G is defined as follows: Let X ∈ g. Take
an integral curve γ(t) of the vector field X passing through e at t = 0. Then define
exp(X) = γ(1). It is easy to see that D exp(e) is an isomorphism and hence exp is a
diffeomorphism in a neighborhood of e.

The right rultiplication by g ∈ G is also a diffeomorphism on G. By analogy we
define the right invariant Haar measure. It is unique up to a constant factor. However
the left and the right invariant measures may be different. If they are equal (up to a
constant factor), then we say the group is unimodal.

A Carnot group is a connected and simply connected Lie group G whose Lie algebra
g admits a stratification g = V1⊕ · · ·⊕Vm, [V1, Vi] = Vi+1. Vi = {0}, for i > m. Carnot
groups are also known as stratified groups.

Note that the basis of V1 generates the whole Lie algebra g and hence the left
invariant vector fields generated by the basis of V1 satisfy Hörmander’s condition.

The structure of the Carnot group is particularly simple. One can prove that the
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exponential map is a global diffeomrphism from g to G. Hence G is diffeomorphic to
the Euclidean space IRn.

This diffeomorphism allows us to identify elements of G with elements of g. Denote
the group law by “◦”. Let X, Y ∈ g be identified (via exp) with elements of G. Then
one can prove that

X ◦ Y = X + Y +
1

2
[X, Y ] +

1

12
([X, [X, Y ]]− [Y, [X, Y ]]) + . . .

where on the right hand side we have a finite linear combination of commutators of
higher orders. The dots denote commutators of order at least 4.

Let

Lecture 12

Sobolev inequalities on metric spaces. Today we will show how to develop a
theory of Sobolev spaces on metric spaces equipped with a measure. The generality of
our approach is motivated by examples given during previous twe lectures: we want to
develope a theory that will cover all those examples.

Now we fix a setting in which we will work. Let (X, d, µ) be a complete metric
space equipped with a Borel measure. We will assume that 0 < µ(B) <∞, for any ball
B. Moreover we assume that µ satisfies a doubling condition i.e. there is a constant
Cd ≥ 1 such that

µ(2B) ≤ µ(B)

for every ball B ⊂ X.

We state now some results form the measure theory on metric spaces with doubling
measure.

The doubling measure implies a lower bound for the growth of a measure of a ball.

Lemma 127 If Y ⊂ X is a bounded set, then

µ(B(x, r)) ≥ (2 diamY )−sµ(Y )rs, (88)

for s = log2Cd, x ∈ Y and r ≤ diamY .

If we take µ to be the Lebesgue measure in IRn, then Cd = 2n and hence s = n. This
shows that the exponent in (88) is sharp.

Proof. Let x ∈ Y . Then

µ(B(x, 2k, r) ≤ Cdµ(B(x, 2k−1r) ≤ . . . ≤ Ck
dµ(B(x, r)).

82



Now we take the least k such that Y ⊂ B(x, 2kr). Hence µ(Y ) ≤ µ(B(x, 2kr). We
estimate k comparing diameter of G with r and then the lemma follows. 2

We will also need a generalization of the Hardy–Littlewood theorem. Let g ∈
L1

loc(X,µ). Then

Mg(x) = sup
r>0

∫
B(x,r)

|g| dµ

is called Hardy–Littlewood maximal function.

Lemma 128 The maximal function is bounded in Lp when 1 < p ≤ ∞ i.e.

‖Mg‖p ≤ C‖g‖p. (89)

We do not prove the lemma here. Inequality (89) is not true for p = 1. The fact that
the measure is doubling plays essential role in the proof. It also plays essential role in
the proof of the following generalization of the Lebesgue theorem.

Lemma 129 Let u ∈ L1
loc(X,µ). Fix c ≥ 1. Then for a.e. x ∈ X

lim
i

∫
Ei

u dµ = u(x),

whenever Ei ⊂ B(x, ri) and µ(B(x, ri)) ≤ cµ(Ei) for some ri → 0.

We do not prove the lemma.

Now we are ready to deal with Sobolev spaces on metric spaces.

We say that u ∈M1,p(X, d, µ) if u ∈ Lp and there is 0 ≤ g ∈ Lp such that

|u(x)− u(y) ≤ d(x, y)(g(x) + g(y)) a.e. (90)

The space is equipped with a norm

‖u‖M1,p = ‖u‖p + inf
g
‖g‖p.

This definition has been mentioned in Lecture 3 and employed in the study of exten-
sion domains in Lecture 8. The definition is based on Theorem 63 which provedes a
characterization of Sobolev spaces.

Another definition of the Sobolev space on a metric space is based on another
characterization of the Sobolev space without using derivatives.

Theorem 130 Let u ∈ Lp(IRn), 1 ≤ p <∞. Then u ∈ W 1,p(IRn) is and only if there
are constants C > 0, σ ≥ 1 and a function 0 ≤ g ∈ Lp(IRn) such that∫

B
|u− uB| dx ≤ Cr

∫
B
g dx (91)

for every ball B. Moreover (91) imlies that |∇u| ≤ g a.e. for some conatnt C.
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We skip the proof of the theorem. 2

Observe that Theorem 130 includes the case p = 1, while the case was excluded
from Theorem 63.

It follows form the theorem that for u ∈ W 1,p(IRn) there is ‖∇u‖p ≡ infg ‖g‖p,
where the infimum is obiously taken over the set of all g as in (91). This result suggests
one could define a Sobolev space on a metric space.

Fix C > 0, σ ≥ 1 and 1 ≤ p < ∞. By P p
C,σ(X, d, µ) we will denote the class of

functions u ∈ Lp(X,µ) such that there is 0 ≤ g ∈ Lp(X,µ) for which the inequality∫
B
|u− uB| dx ≤ Cr

∫
B
g dx,

holds on evey ball B of radius r. We endowe the space with a norm

‖u‖P p
C,σ

= ‖u‖p + inf
g
‖g‖p.

Now we will show that when p > 1 one can provide some other equivalent definitions.

We say that u ∈ Cp(X, d, µ) if u ∈ Lp and u#
1 ∈ Lp, where

u#
1 (x) = sup

r>0
r−1

∫
B(x,r)

|u− uB| dµ.

The space is endowed with the norm

‖u‖Cp = ‖u‖p + ‖u#
1 ‖p.

Theorem 131 Let p > 1, then P p
C,σ = M1,p = Cp and the norms are equivalent.

Proof. Let u ∈M1,p. Then integrating inequality (90) with respect to y ∈ B and then
with respect to x ∈ B we get te inequality∫

B
|u− uB dµ ≤ Cr

∫
B
g dµ

which easily implies that u ∈ P p
C,σ for all C > 0 and σ.

Now let u ∈ P p
C,σ. Then

r−1
∫
B
|u− uB| dµ ≤ C

∫
σB
g dµ ≤ CMg, (92)

where Mg is the Hardy–Littlewood maximal function. Taking the supremum on the
left hand side of (92) yields

u#
1 ≤ CMg (93)
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Now Lemma 128 together with (93) implies that u#
1 ∈ Lp and hence u ∈ Cp.

Assume that u ∈ Cp.

Reference comments

We do not provide here a complete list of references of the topics discussed during the
lectures. It is simply impossible. The list would be to large. For the topincs which are
standard we provide references to books. For the other topics which are not so standard
we refer to the original papers, where the reader may find details and further references.
We want to emphasize and appologise that the list of references is not complete. It was
prepared in hurry.

The direct method described in Chapter I is standard, see e.g. Evans [9], Dacorogna
[8], De Figeiredo [12], Giaquinta [22], Struwe [65].

There are many excelent sources for the theory of Sobolev spaces described in Chap-
ters II and III. Our approach is close to that in Evans and Gariepy [10], Gilbarg and
Trudinger [23], Maly and Ziemer [56], Ziemer [71].

The approach to pointwise inequalities is rather new. It has recently been discovered
by many authors. However some ideas go back to old papers of Calderón and Zygmund,
[4], [5]. Theorem62 is due to Liu, [51]. The characterization of the Sobolev space,
Theorem 63, and the definition of the Sobolev space on a metric space is due to Haj lasz
[28].

The theory of elliptic equation developped in Chapters IV and V is standard, see e.g.
De Figueiredo [12], Giaquinta [22], Gilbarg and Trudinger [23], Giusti [24, Appendix],
Heinonen Kilpeläinen and Martio [39], Malý and Ziemer [56], Struwe [65].

John domains are named after F. John, [46]. The theory of Sobolev spaces in
John domains was originated in particular in Bojarski [2], Goldshtein and Reshetn’yak
[25], Hurri [42], Martio [57], and Smith and Stegenga [64]. There are several papers
devoted to the study of Sobolev spaces in domains with the irregular boundary that
we do not mention here. Theorem 105 is taken form Martio [57] and Theorem 107
from Bojarski [2]. Proofs of both of the theorems are different and simpler than the
original ones. They are taken from Haj lasz and Koskela [32] and [33]. The truncation
argument employed in the proof of Theorem 107 is based on some ideas of Maz’ya [58]
and Long and Nie [52]. Similar truncation method has recently beed rediscovered by
many authors dealing with various generalizations of Sobolev inequalities.

For further applications of the Sobolev spaces to the boundar behaviour of conformal
and quasiconformal mappings, see Haj lasz [27], Koskela, Manfredi and Villamor [49],
Koskela and Rhode [50], Malý and Martio [55] and references therein.

There are several monographs devoted to the theory of quasiconformal mappings,
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see Heinonen Kilpeläinen and Martio [39], Iwaniec [43], Reshetn’yak [60], Rickman
[61], Väisälä [67], Vuorinen [70]. The approach to quasiconformal mappings through
the Sobolev spaces is the standard one.

The general Rellich–Kondrachov theorem as in Lecture 7 is taken from Haj lasz and
Koskela [32]. The statement seems new, but the method of the proof employes standard
arguments only.

The characterization of domains with the extension property is due to Haj lasz and
Martio [34]. Extension theorem for uniform domains is due to Jones [45].

Theorem 115 is due to Holopainen and Soardi [40]. The reader will find there further
references to a wide area of analysis on graphs.

Upper gradients and quasiconformal mappings between metric spaces were intro-
duced and investigated in Heinonen and Koskela [38]. Theorem 119 is due to Semmes
[63].

There is a huge number of papers devoted to the analysis of vector fields satisfying
Hörmander’s condition. The theory of sub-Laplace equations originates from a cele-
brated paper of Hörmander [41]. Theorem 124 is due to Nagel, Stein and Wainger [59]
and Theorem 124 is due to Jerison [44]. For further results see a book of Varopoulos,
Saloff–Coste and Coulhon [69]. See also Buckley, Koskela and Lu [3], Capogna Danielli
Garofalo [6], Chernikov and Vodopyanov [7], Franchi, Lu and Wheeden [?], Haj lasz and
Strzelecki [35], and references therein for the generalizations to nonlinear equations.

A vary nice introduction to Carnot groups is provided in Folland and Stein [13] and
in Heinonen [37].

The case of general vector fields which do not necessarely satisfy Hörmander’s con-
dition is developped in particular in Franchi, Guttiérez and Wheeden, [14], Garofalo
and Nhieu, [20], [21], Haj lasz and Koskela, [33] and references therein.

The role of the Poincaré inequality, Sobolev inequality and the doubling property
in the proof of the Harnack inequality has been emphasized by Fabes, Kenig and
Serapioni, [11] and in a more general setting by Heinonen, Kilpeläinen and Martio, [39].
It was Franchi and Lanconelli who suggested the approach to Harnack inequalities for
generalized sub-Lapalce equations by the way of Sobolev–Poincaré inequalities and the
doubling property for on metric balls, After their work a large developement has been
undergone.

As explained above was clear that the crucial role in the proof of the Harnack
inequality in various situations is played by the Sobolev–Poincaré inequality and the
doubling property. It seems that Grigor’yan [26] and independently Saloff-Coste, [62]
have discovered that in some situations the Sobolev inequality follows from the Poincaré
inequality and the doubling property. Hence in order to prove Harnack inequality it
is enough to prove doubling inequality and Poincaré inequality. Later, the fact that
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Poincaré and doubling implies Sobolev–Poincaré also has been established in a very
general setting by many other authors, Biroli and Mosco [1], Franchi, Lu and Wheeden
[18], Franchi, Pérez and Wheeden, [19], Garofalo and Nhieu [21], Haj lasz and Koskela
[31], [33], Maheux and Saloff-Coste [54], Sturm [66] and the others. In Lecture 11 we
presented a general theorem of this type following Haj lasz and Koskela, [31], [33].

Theory of Sobolev spaces on metric space has been originated in Haj lasz [28]. The
space defined there was our M1,p. Then several other equivalent approaches has been
developped. The space P p has been introduced in Haj lasz and Koskela [31], [33] and
the space Cp in Haj lasz and Kinnunen [30].

The characterization Theorem 130 and its further generalizations has been obtained
in Franchi, Haj lasz and Koskela [15], Haj lasz and Koskela [33], Koskela and MacManus
[48].

The references to Sobolev spaces on metric spaces include also Haj lasz [29],
Heinonen and Koskela [38], Ka lamajska [36], Kilpeläinen, Kinnunen and Martio, [?],
Franchi Lu and Wheeden [18], Koskela and MacManus [48], MacManus and Pérez, [53],
Semmes [63].
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[42] Hurri, R.: Poincaré domains in IRn. Ann. Acad. Sci. Fenn. Ser. A I. Math. Dissertationes, 71 (1988), 1–42.

[43] Iwaniec, T.: Lectures on Quasiconformal Mappings. Unpublished Lecture Notes.
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[62] Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Mat. Res. Notices, 1992 no.
2, pp. 27–38.

[63] Semmes, S.: Finding curves on general spaces through quantitative topology, with applications to Sobolev and
Poincare inequalities. Selecta Math. (N.S.) 2 (1996), 155–295.
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