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BOUNDARY BEHAVIOUR OF SOBOLEV MAPPINGS

PIOTR HAJLASZ

(Communicated by Theodore W. Gamelin)

ABSTRACT. Riemann mapping between bounded domains belong to Sobolev
space W1.2. We investigate the boundary behaviour of Sobolev mappings,
and hence it applies to conformal and more general quasiconformal mappings.
We generalize a theorem of Qksendal.

1. INTRODUCTION

If the mapping f: B — R? is conformal and continuous at the boundary,
then the integral [, |V f |2 is finite. Indeed, it follows from Cauchy-Riemann
equations that |f;|? = J;, and the integral [, J is finite because it is Lebesgue
measure of the image. This observation suggests the use of Sobolev function
theory in the investigation of boundary behaviour of conformal mappings. Such
an approach was successfully applied by Maly and Martio [9]. We will follow
the general idea of [9] in connection with pointwise estimates taken from [3].

By H? we denote d-dimensional HausdorfP’s measure. The average value
of f will be denoted by fy = u(4)~' [, fdu = §,fdu. For 1 < p < o0,
the Sobolev space of functions with p-integrable gradient is denoted by W!-7,
By Q we denote an n-dimensional cube, and finally by C we denote a general
constant which can change its value even in the same proof.

2. RESULT
We say that the set 4 ¢ R" is d-local if H%(A) < oo and

sup r“HYANB(x,r) <.
x€A,r<l1

If fe WHP(Q), then we assume that f is defined at every point by the formula
f(x) :=limsup,_, fB(x,,) f(z)dz. It is well known that for f € W!-1(Q), the

inequality |f(x) — fp| < CfQ |V f(z)|lx — z|'~"dz holds for almost all x € Q
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(see [4, Lemma 7.16]). Now applying the limiting process (used in the definition
of f at every point) we get that this inequality holds everywhere (maybe with
a worse constant C; see [5] or [2] for details). By W!1-P(Q, R") we denote
the space of mappings f = (fi,..., fn): Q — R" such that all coordinate
functions f; belong to W!-»(Q). In the case of mappings we also assume
that f is defined at every point. Namely, we apply the above procedure to
coordinate functions of f.

Theorem 1. Let f € W!1-P(Q, R"), where Q C R" is an open set and 1 <
p < 0o, be defined at every point as above. Let A C Q be a d-local set where
p+d > n. Then there exists E C A with H*(E) =0 such that for 0 < a < d
and B > =, the following implication holds:

F C A\E, H*(F) < 00 = HE(f(F)) =0.

If Q is a bounded domain with Lipschitz boundary and f € W!-2(Q), then
we define f at the boundary points by f(x) :=limsup,_, fB(x’,)nQ f(z)dz for
all x € 6Q. Since we have an extension operator for such domains, we can
apply the above theorem to a d-local set A C 6Q.

Corollary 1. Let Q be a bounded domain with Lipschitz boundary. If f €
Wl.n(Q, R") is defined at every point of Q as above, then there exists E C 0Q
with H"~1(E) = 0 such that for a < n — 1, the following implication holds:

F c 8Q\E, H*(F) < 0o = H*"("=V(f(F)) =0.

If we put @ = n — 1, then the above corollary is a very special case of [9,
Corollary H] (namely, they have proved that in this case one can take E with
HausdorfP’s dimension equal to zero); however, the results of [9] do not apply
to other cases.

As we mentioned in the Introduction, the above corollary for n = 2 applies
to conformal mappings. In this case it was proved with a = 1 (for conformal
mappings of course) by Gksendal [10]. The conformal case follows also from
much more delicate estimations of Jones and Makarov [8]. In the case of plane
quasiconformal mappings Corollary 1 was proved for o = 1 by Heinonen and
Martio [7].

It seems that the above corollary with n > 3, o < n— 1 is new even for
quasiconformal mappings (compare the discussion in [9]).

Since the theorem has a local nature, we can assume that Q = R". In the
proof we need some lemmas. Let M}g(x) = sup, g r* fB(X’r) lg(z)|dz.

Lemma 1. If f € WI-?(R") and 0 < 1 < 1, then the following inequality holds
everywhere:

1£(x) = )] < Clx = "My V£ 1(x) + Mfe_y [V 1(7))-

Remark. This inequality follows from more general results of [3]. It is also
related to the inequalities in [1, 5, 2], but we will prove it for the sake of
completeness.

In the proof of Lemma 1 we need the following Hedberg’s type lemma (com-
pare [6, 12, 2, 3]).
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Lemma 2. If y > A > 0, then there exists a constant C such that

/Q lxlf(% dz < C(diam Q) "M, o 8(x)
forall g e LY(Q) and all x € Q.

Proof. We break the integral on the left-hand side into the sum of the integrals
over ‘rings’ QN (B(x, diam Q/2%)\B(x, diam Q/2k+!)). In each ‘ring’ we have
|x — z|"~" ~ (diam Q/2%)?—" . Now we estimate the integral over the ‘ring’ by
the integral over the ball B(x, diam Q/2k), and the lemma follows easily.

Proof of Lemma 1. Let x,y € Q, diamQ ~ |x — y|. We have
|f(x) = fW)I < | f(x) = fol + | f(¥) = fol
V/f(2)| |Vf(2)l
<C —— — ol
< (/Q z+/Q z)

b=z =z
< Clx —y|"" MM _, IV FI(x) + M} _, IV 1))
The last inequality follows from Lemma 2 with y =1.

Lemma 3. If A C R" is d-local and A = ”;4 , then there exists a constant C
such that

HY((x € AIMg(x) > 1)) < & /R lg(z)P dz
forall g € LP(R").

Lemma 3 states that the operator M} is of weak type (p,p) (between
LP(R") = LP(R", H") and L?(A, HY) (H° indicates the measure with re-
spect to which we define the L” norm)). The proof follows by a standard
application of Vitali’s type covering lemma, in the same way as in the classical
Hardy-Littlewood’s maximal theorem (compare [11, Chapter 1]).

Lemma 4. Let A be a d-local set, d < n, g € L*(R"), and A = "5%. Then

to every & > 0 there exists E C A with H*(E) < & such that M*g(x) =0
uniformly with respect to x € A\E .

Proof. Let k € C°(R") be such that ||k — g|?, < e?*!. Let h = k— g.
Evidently there exists R < 1 with sup,cg. Mik < & (because k € C§°). Now
since Mhg < M}h+ Mpk,

Hi({Mbg > 261 < HU(Mih > en < o [ AP < Co.
Rn
Let R;, & — 0 be such that H"({Mﬁig > &;}) < €/2'. Now it suffices to put

E=U,{M} g >e}.

Proof of Theorem 1. We prove that Theorem 1 holds with E =, E;, where
E; is as in Lemma 4 with g = |V f| and ¢ = 1/i. It suffices to prove that the
following implication holds for all i:

F C A\E;, H*(F) < 00 = HF(f(F))=0.
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Let F c U;B(xi,r), xi € F, 3 r®* < CH*(F), sup,r; < & < 1. Since f
is (1 —A)-Holder continuous on A\E; with 1 =254 then f(B(x;,r)NF)C
B(f(x;), s;) where

5i < C(sgpMﬁlVfl)r,-“*-

Hence HA(f(F)) =0 because according to Lemma 4
>osf < (up MV 3o =0,
i i
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