Homework 1 for Math 413

Due day: Tuesday September 11 recitations.

Problem 1. Use the truth table to prove equivalence of the statements: $p \equiv q$ and $(p \Rightarrow q) \land (q \Rightarrow p)$.

Proof. WRITE YOUR SOLUTION HERE.

Problem 2. Use the truth table to prove equivalence of the statements:

$$(p \Rightarrow q) \equiv \neg (p \land \neg q) \equiv (\neg q \Rightarrow \neg p).$$

П

Proof. WRITE YOUR SOLUTION HERE.

Problem 3. Use the equivalence

$$(0.1) p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

to prove

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r).$$

To this end apply (0.1) to $\neg p$, $\neg q$, $\neg r$ in place of p, q, r, and negate the statement using De Morgan's Laws.

Proof. WRITE YOUR SOLUTION HERE.

Problem 4. Negate the statement¹

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ (|x - y| < \delta \ \Rightarrow \ |\sin x - \sin y| < \varepsilon).$$

Proof. WRITE YOUR SOLUTION HERE.

Problem 5. Negate the statement: For all real numbers x, y satisfying x < y, there is a rational number q such that x < q < y. Formulate the negation as a sentence and not as a formula involving quantifiers.

Proof. WRITE YOUR SOLUTION HERE.

Problem 6. Use an argument by contradiction prove that $\sqrt{3}$ is irrational.

Proof. WRITE YOUR SOLUTION HERE.

Problem 7. In Example 1.5 we provided a direct proof. Prove the same statement using a proof by contradiction.

Proof. WRITE YOUR SOLUTION HERE.

Problem 8. Prove the following statement²

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ (n \ge n_0 \Rightarrow n^{-1} \le \varepsilon).$$

Proof. WRITE YOUR SOLUTION HERE.

Problem 9. Find a mistake in the solution of Example 1.15 and provide a correct solution.

Proof. WRITE YOUR SOLUTION HERE.

¹This is a true statement known as uniform continuity of the function $\sin x$. However, you are not asked to prove the statement only to negate it.

²Compare with Example 1.12.