Homework 2 for Math 413

Due day: Thursday September 20 recitations.

Problem 10. Prove that $A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$.	
Proof. WRITE YOUR SOLUTION HERE.	
Problem 11. Prove that $A \cap B = (A \cup B) \setminus (A\Delta B)$, where $A\Delta B = (A \setminus B)$	$)\cup (B\setminus A).$
Proof. WRITE YOUR SOLUTION HERE.	
Problem 12. Let $A_t = \{x \in \mathbb{R} : x \le t^2\}, t \in \mathbb{R}$. Find $\bigcap_{t \in \mathbb{R}} A_t$. <i>Proof.</i> WRITE YOUR SOLUTION HERE.	
Problem 13. Let $A_n = \left[1 + \frac{1}{n}, 2 + \frac{1}{n}\right], n \in \mathbb{N}$. Find $\bigcap_{n=1}^{\infty} A_n$ and $\bigcup_{n=1}^{\infty} A_n$. <i>Proof.</i> WRITE YOUR SOLUTION HERE.	
Problem 14. Provide an example of a function $f: X \to Y$ and sets $A, B \subset f(A \cap B) \neq f(A) \cap f(B)$.	X such that
Proof. WRITE YOUR SOLUTION HERE.	
Problem 15. Prove that if $f: X \to Y$ is one-to-one and $A, B \subset X$, then $f(A) \cap f(B)$.	$f(A \cap B) =$
Proof. WRITE YOUR SOLUTION HERE.	
Problem 16. Let $f: X \to Y$ and $g: Y \to Z$. Prove that if $g \circ f: X \to Z$ if then f is one-to-one.	s one-to-one,
Proof. WRITE YOUR SOLUTION HERE.	
Problem 17. Provide an example of functions $f: X \to Y$ and $g: Y \to g \circ f: X \to Z$ is one-to-one, but $g: Y \to Z$ is not one-to-one.	Z such that
Proof. WRITE YOUR SOLUTION HERE.	
Problem 18. Prove that $f(x) = \frac{2-x}{x}$ is a bijection from [1, 2] to [0, 1]. (Y include a proof that the function f is well defined i.e., that the values of f interval $[0, 1]$.)	
Proof. WRITE YOUR SOLUTION HERE.	