Homework 4 for Math 413

Due day: Thursday October 18 recitations.

Problem 31. Prove the property (Z14): for all $a, b, c \in \mathbb{Z}$ we have $a \leq b \Rightarrow a + c \leq b + c$. Proof. WRITE YOUR SOLUTION HERE. Problem 32. Let $F = \{(n, m) \in \mathbb{Z} \times \mathbb{Z} : m \neq 0\}.$ Prove that the relation $(n_1, m_1) \sim (n_2, m_2)$ if and only if $n_1 m_2 = n_2 m_1$. is an equivalence relation. Proof. WRITE YOUR SOLUTION HERE. **Problem 33.** Let $F_* = \mathbb{Z} \times \mathbb{Z}$ and define the relation $(n_1, m_1) \sim (n_2, m_2)$ if and only if $n_1 m_2 = n_2 m_1$. We can try to mimic the construction of rational numbers with the set F_* in place of F. Where does the theory fall apart? *Proof.* WRITE YOUR SOLUTION HERE. **Problem 34.** $\mathbb{Z}_{11} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ is a field. Find $7 + 8, 7 \cdot 8, 7/8$ in \mathbb{Z}_{11} . Proof. WRITE YOUR SOLUTION HERE. **Problem 35.** Let X be a non-empty set and let P(X) be the power set. In the power set we have the operation of addition $A + B := A \cup B$. Check which of the axioms A1, A2, A3, A4 are satisfied. *Proof.* WRITE YOUR SOLUTION HERE. **Problem 36.** Give an example of a non-empty set X with a relation \sim that is (a) reflexive, but not symmetric or transitive; (b) symmetric, but not reflexive or transitive; (c) transitive, but not reflexive or symmetric; (d) reflexive and symmetric, but not transitive; (e) reflexive and transitive, but not symmetric; (f) symmetric and transitive, but not reflexive. *Proof.* WRITE YOUR SOLUTION HERE. **Problem 37.** Let X be a nonempty set with a relation \sim . Consider the following argu-

ment. Claim: If \sim is symmetric and transitive, then it is also reflexive.

Proof. $x \sim y \Rightarrow y \sim x$; also $x \sim y$ and $y \sim x \Rightarrow x \sim x$. Therefore $x \sim x$ for every $x \in X$.

This argument is at odds with part (f) of the previous problem. Where is the flaw?

Proof. WRITE YOUR SOLUTION HERE.

¹It differs from F in Problem 32, because we include (n,0). Remember that [(n,m)] represents the fraction $\frac{n}{m}$ so now we try to develop rational numbers, where we can divide by 0.

Problem 38.	Let F be a set w	with operations of	${\rm addition} + {\rm and} $	multiplication \cdot and
assume that it s of one point.	satisfies axioms (A	1)-(A9) and axiom	(A10'): $1 = 0$. I	Prove that F consists

Proof. WRITE YOUR SOLUTION HERE. \Box