Homework 5 for Math 413

Due day: Thursday November 8 recitations.

Problem 39. Write a formula for a bijection $f:(a,b) \to \mathbb{R}, a < b, a,b \in \mathbb{R}^{1}$

Hint: Use tan x function and a linear change of variables.

Proof. WRITE YOUR SOLUTION HERE.

Problem 40. Write a formula for a bijection $f:(0,\infty)\to(0,1)$.

Proof. WRITE YOUR SOLUTION HERE.

Problem 41. Prove that (0,1) and [0,1] have the same cardinality by constructing a bijection $f:[0,1] \to (0,1)$. Do not use the Cantor-Bernstein theorem.

Proof. WRITE YOUR SOLUTION HERE.

Problem 42. Prove that (0,1) and [0,1] have the same cardinality by applying the Cantor-Bernstein theorem.

Proof. WRITE YOUR SOLUTION HERE.

Problem 43. Prove that the power set $P(\mathbb{N})$ has the same cardinality as the set of all infinite sequences

$$\{(a_1, a_2, \ldots): a_i \in \{0, 1\}, i = 1, 2, \ldots\}$$

Hint: Associate with each such a sequence a subset of \mathbb{N} . Use 0 and 1 to denote which natural number you want to include in a set.

Proof. WRITE YOUR SOLUTION HERE.

Problem 44. Use Problem 43 and the Cantor theorem to show that the set

$$\{(a_1, a_2, \ldots): a_i \in \{0, 1\}, i = 1, 2, \ldots\}$$

in uncountable.

Proof. WRITE YOUR SOLUTION HERE.

Problem 45. Prove that the set

$$\{(a_1, a_2, \ldots): a_i \in \{0, 1\}, i = 1, 2, \ldots\}$$

is uncountable by mimicking the proof of uncountability of the set of real numbers.

Proof. WRITE YOUR SOLUTION HERE.

Problem 46. Prove directly using the definition, that $\lim_{n\to\infty} \frac{2n+5}{3n-7} = \frac{2}{3}$.

Proof. WRITE YOUR SOLUTION HERE.

Problem 47. Prove directly using the definition, that $\lim_{n\to\infty} \frac{2n+5}{3n^2-7} = 0$.

Proof. WRITE YOUR SOLUTION HERE.

¹That proves that \mathbb{R} and (a,b) have the same cardinality.

²That proves that $(0, \infty)$ and (0, 1) have the same cardinality.

Problem 48. Prove that if $a_n > 0$, a > 0, and $\lim_{n \to \infty} a_n = a$, then $\lim_{n \to \infty} \sqrt{a_n} = \sqrt{a}$. **Hint:** Use the formula $a - b = (a^2 - b^2)/(a + b)$ to estimate $\sqrt{a_n} - \sqrt{a}$. Proof. WRITE YOUR SOLUTION HERE. **Problem 49.** Find the limit $\lim_{n\to\infty}(\sqrt{n^2+2n+5}-n)$. You can use results proved in class, but clearly explain what results you use. **Hint:** Use the formula $a-b=(a^2-b^2)/(a+b)$. You can use without proving it, that $\lim_{n \to \infty} \sqrt{1 + \frac{2}{n} + \frac{5}{n^2}} = 1.$ Proof. WRITE YOUR SOLUTION HERE. **Problem 50.** Find the limit $\lim_{n\to\infty} \sqrt[n]{n^2+n}$. You can use results that have been proved in class. Proof. WRITE YOUR SOLUTION HERE. **Problem 51.** Prove that the sequence $\frac{n^3 + (-1)^n n^3}{n^2 + 1}$ is divergent by showing that it is unbounded. *Proof.* WRITE YOUR SOLUTION HERE. **Problem 52.** Although the sequence $\frac{n^3 + (-1)^n n^3}{n^2 + 1}$ is unbounded (Problem 51), show that it does not diverge to $+\infty$.

Proof. WRITE YOUR SOLUTION HERE.