Differential Geometry: homework # 2

Due day: September 23

All problems are graded in the scale 0–10. You need to show all your work. Answer is not enough. I am not sure if I will not return the homework, so you might want to keep a copy.

Problem 12. Let $\alpha = \alpha(t): I \to \mathbb{R}^3$ be any regular curve three times continuously differentiable (not necessarily parametrized by arc-length). Prove that the arc-length reparametrization of α is a Frenet curve if and only if $\alpha'(t)$ and $\alpha''(t)$ are linearly independent for all t.

Problem 13. Let $L_1, L_2 : \mathbb{R}^3 \to \mathbb{R}^3$ be linear transformations with matrices L_1 and L_2 respectively. Prove that the matrix of the linear transformation $L_2 \circ L_1$ is the product of matrices L_2L_1 .

Problem 14. Prove that if $L: \mathbb{R}^3 \to \mathbb{R}^3$ is an orthogonal transformation, then

- (a) |Lv| = |v| for all $v \in \mathbb{R}^3$,
- (b) $\langle Lv, Lw \rangle = \langle v, w \rangle$ for all $v, w \in \mathbb{R}^3$.

Problem 15. Let A be a 3×3 matrix. Prove that

- $\begin{array}{ll} \text{(a)} \ \ O(3) = \{A: \, AA^T = I\}, \\ \text{(b)} \ \ O(3) = \{A: \, A^TA = I\} \end{array}$

Problem 16. Prove that $A \in O(3)$ if and only if $A^T \in O(3)$.

Problem 17. Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear map and let $\alpha: I \to \mathbb{R}^3$ be a smooth curve. Then $\beta = L \circ \alpha : I \to \mathbb{R}^3$ is also a smooth curve. Prove that $\beta'(t) = L(\alpha'(t))$ for all $t \in I$.