Homework 4 for Math 1530

Due day: Tuesday October 1 recitations.

Problem 35. Prove that if a sequence $\{a_n\}$ is bounded and $a_{n+1} \geq a_n - \frac{1}{2n}$ for all n, then the sequence $\{a_n\}$ is convergent. Proof. WRITE YOUR SOLUTION HERE. **Problem 36.** Find the limit $\lim_{n\to\infty} n\sin(2\pi e n!)$. *Proof.* WRITE YOUR SOLUTION HERE. Problem 37. Find the limit $\lim_{n \to \infty} n^3 \left(\sqrt{n^2 + \sqrt{n^4 + 1}} - n\sqrt{2} \right).$ *Proof.* WRITE YOUR SOLUTION HERE. **Problem 38.** Suppose that $\{a_n\}_n$ is a sequence such that for every integer $k \geq 2$ the sequence $\{a_{k\cdot n}\}_n$ is convergent. Does it follow that the sequence $\{a_n\}_n$ is convergent? Proof. WRITE YOUR SOLUTION HERE. **Problem 39.** Prove that if $\{a_n\}_n$ is a sequence such that each of the sequences $\{a_{2n}\}_n$, $\{a_{2n+1}\}_n$ and $\{a_{3n}\}_n$ is convergent, then $\{a_n\}_n$ is convergent too. Proof. WRITE YOUR SOLUTION HERE. **Problem 40.** Prove that there is a sequence such that the set of all possible limits of subsequences is the whole interval [0, 1]. *Proof.* WRITE YOUR SOLUTION HERE. **Problem 41.** Prove that if $\lim_{n\to\infty} a_n = a \in \mathbb{R}$, then for any sequence $\{b_n\}$ $\lim_{n \to \infty} \sup(a_n + b_n) = a + \lim_{n \to \infty} \sup b_n.$ Proof. WRITE YOUR SOLUTION HERE. **Problem 42.** Let c_0 be the class of all sequences $\{x_n\}$ such that $\lim_{n\to\infty}x_n=0$. Prove that if $\{a_n\}$ is a bounded sequence, then $\inf_{(x_n)\in c_0} \left(\sup_{n\in\mathbb{N}} \{a_n + x_n\} \right) = \limsup_{n\to\infty} a_n.$

Proof. WRITE YOUR SOLUTION HERE.