Homework 5 for Math 1530

Due day: Tuesday October 8 recitations.

Problem 43. Prove that there is an increasing sequence of integers $a_1 < a_2 < a_3 < \dots$ such that for every $k \in \mathbb{N}$, the sequence $\{\sin(ka_n)\}_{n=1}^{\infty}$ converges.

Proof. WRITE YOUR SOLUTION HERE.

Problem 44. Fix $k \in \mathbb{N}$ and define

$$z_n = \frac{1^k + 2^k + \ldots + n^k}{n^{k+1}}, \quad n = 1, 2, 3, \ldots$$

Prove that

$$\lim_{n \to \infty} n\left(z_n - \frac{1}{k+1}\right) = \frac{1}{2}.$$

Proof. WRITE YOUR SOLUTION HERE.

Problem 45. Let $\beta > 0$ and $\{u_n\}$ be a sequence of positive real numbers such that $\frac{u_{n+1}}{u_n} \leq \beta$ for every $n \in \mathbb{N}$. Prove that

$$\limsup_{n \to \infty} \sqrt[n]{u_n} \le \limsup_{n \to \infty} \left(\frac{u_{n+1}}{u_n} \right).$$

Proof. WRITE YOUR SOLUTION HERE.

Problem 46. Prove that if a sequence (a_n) of real numbers is convergent to a finite limit, $\lim_{n\to\infty} a_n = g \in \mathbb{R}$, then

$$\lim_{x \to \infty} e^{-x} \sum_{n=0}^{\infty} a_n \frac{x^n}{n!} = g.$$

Proof. WRITE YOUR SOLUTION HERE.

Problem 47. Suppose that a sequence of functions f_1, f_2, \ldots converges uniformly on [0, 1] to some function f. Suppose also that there is a constant M such that $|f_i(x)| \leq M$ for all i and x. Prove that the sequence of squares f_1^2, f_2^2, \ldots converges uniformly to f^2 .

Proof. WRITE YOUR SOLUTION HERE.

Problem 48. Prove that if $f:(0,1)\to\mathbb{R}$ is uniformly continuous, then there is a continuou function $F:[0,1]\to\mathbb{R}$ such that F(x)=f(x) for all $x\in(0,1)$.

Proof. WRITE YOUR SOLUTION HERE.

Problem 49. Prove that if $f:[0,\infty)\to\mathbb{R}$ is continuous and the limit $\lim_{x\to\infty} f(x)$ exists and is finite, then f is uniformly continuous.

Proof. WRITE YOUR SOLUTION HERE.

Problem 50. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous, then there exist constants $a \geq 0$, $b \geq 0$ such that $|f(x)| \leq a|x| + b$ for all $x \in \mathbb{R}$.

Proof. WRITE YOUR SOLUTION HERE.

Problem 51. Prove that there is no continuous function $f : \mathbb{R} \to \mathbb{R}$ such that f(f(x)) = -x for all $x \in \mathbb{R}$.

Proof. WRITE YOUR SOLUTION HERE.

Problem 52. Suppose that $f:(0,1)\to\mathbb{R}$ is continuous. Suppose also that there are two sequences $x_n,y_n\in(0,1)$ both convergent to 0 such that $f(x_n)\to 0$, $f(y_n)\to 1$. Prove that there is a sequence $z_n\in(0,1)$ convergent to 0 such that $f(z_n)\to 1/2$.

Proof. WRITE YOUR SOLUTION HERE.

Problem 53. Let $f:[a,b]\to\mathbb{R}$ be continuous. Prove that the function

$$g(x) = \sup_{t \in [a,x]} f(t)$$

is continuous.

Proof. WRITE YOUR SOLUTION HERE.

Problem 54. A function $f:[0,1]\to\mathbb{R}$ is continuous and has the property that

$$\lim_{x \to 0^+} \frac{f(x+1/3) + f(x+2/3)}{x} = 1.$$

Prove that there is $x_0 \in [0,1]$ such that $f(x_0) = 0$.

Proof. WRITE YOUR SOLUTION HERE.