Homework 8 for Math 1530

Due day: December 13, 2019

Problem 84. Let (X, d) be a metric space. Prove that the set $A = \{x \in X : d(x, x_0) > 1\}$ is open, where $x_0 \in X$ is any fixed point.

Proof. WRITE YOUR SOLUTION HERE.

Problem 85. Show that the following sets are not compact, by exhibiting an open cover with no finite subcover

- (a) $\{x \in \mathbb{R}^n : |x| < 1\},$
- (b) $\mathbb{Z} \subset \mathbb{R}$.

Proof. WRITE YOUR SOLUTION HERE.

Problem 86. Is it true that in a metric space the closed ball equals to the closure of the open ball, that is $\bar{B}(x,r) = \operatorname{cl}(B(x,r))$, where

$$B(x,r) = \{y : d(x,y) < r\}$$
 and $\bar{B}(x,r) = \{y : d(x,y) \le r\}$?

Proof. WRITE YOUR SOLUTION HERE.

Problem 87. Let $(x_n)_{n=1}^{\infty}$ be a sequence of points in \mathbb{R}^3 such that $||x_{n+1}-x_n|| \leq 1/(n^2+n)$, $n \geq 1$. Show that (x_n) converges.

Proof. WRITE YOUR SOLUTION HERE.

Problem 88. Prove that if K_1 and K_2 are nonempty compact and disjoint subsets of a metric space X, then the set $A = K_1 \cup K_2$ is disconnected.

Proof. WRITE YOUR SOLUTION HERE.

Problem 89. Prove that (\mathbb{R}^n, ρ) , where

$$\varrho(x,y) = \frac{\|x-y\|}{1 + \|x-y\|}$$

is a metric space.

Proof. WRITE YOUR SOLUTION HERE.

Problem 90. Prove that every compact metric space is separable.

Proof. WRITE YOUR SOLUTION HERE.

Problem 91. Provide an example of a complete metric space that is not separable.

Proof. WRITE YOUR SOLUTION HERE.

Problem 92. Let X be a complete metric space and let V_n , n = 1, 2, 3, ... be open and dense sets. Prove that $\bigcap_{n=1}^{\infty} V_n$ is dense in X.

Proof. WRITE YOUR SOLUTION HERE.

Problem 93. Use previous problem to prove that the set of irrational numbers cannot be written as a union of countably many closed subsets of \mathbb{R} .

Proof. WRITE YOUR SOLUTION HERE.

Problem 94. Prove that ℓ^1 is a metric space, where

$$\ell^1 = \{x = (x_1, x_2, \dots) : \sum_{n=1}^{\infty} |x_i| < \infty\} \quad d(x, y) = \|x - y\|_1 = \sum_{n=1}^{\infty} |x_n - y_n|.$$

Proof. WRITE YOUR SOLUTION HERE.

Problem 95. Prove that ℓ^1 is complete.

Proof. WRITE YOUR SOLUTION HERE.

Problem 96. Prove that ℓ^1 is separable.

Proof. WRITE YOUR SOLUTION HERE.

Problem 97. Prove that if $x \in \ell^1$ and r > 0, then the closed ball in ℓ^1

$$\bar{B}(x,1) = \{ z \in \ell^1 : ||x - z||_1 \le 1 \}$$

is not compact.¹

Proof. WRITE YOUR SOLUTION HERE.

Problem 98. Let

$$\ell^{\infty} = \{x = (x_1, x_2, \dots) : \sup_{n} |x_n| < \infty\} \quad d(x, y) = \|x - y\|_{\infty} = \sup_{n} |x_n - y_n|.$$

Prove that the metric space ℓ^{∞} is not separable.

Proof. WRITE YOUR SOLUTION HERE.

Problem 99. Prove that for every separable metric space (X, d) there is an isometric embedding $\kappa: X \to \ell^{\infty}$.

Hint: Let $x_0 \in X$ and let $\{x_i\}_{i=1}^{\infty}$ be a countable and a dense subset. For each $x \in X$ consider a sequence $(d(x, x_i) - d(x_i, x_0))_{i=1}^{\infty}$.

Proof. WRITE YOUR SOLUTION HERE.

Problem 100. Let $X \subset \mathbb{R}^n$ be a compact set. Prove that the set

$$Y = \left\{ y \in \mathbb{R}^n : |x - y| = 2019 \text{ for some } x \in X \right\}$$

is compact.

Proof. WRITE YOUR SOLUTION HERE.

Problem 101. Construct an example of a decreasing family of connected sets

$$C_1 \supset C_2 \supset C_3 \supset \ldots$$

such that the intersection $\bigcap_{i=1}^{\infty} C_i$ is disconnected. (It is enough if you define C_i on a picture.)

¹This provides an example of a complete metric space where bounded and closed sets are not necessarily compact.

Proof. WRITE YOUR SOLUTION HERE.

Problem 102. Let $(f_n)_{n=1}^{\infty}$, $f_n:[0,1]\to\mathbb{R}$ be sequence of continuous functions such that

- (a) $f_n(x) \ge 0$ for all x and n,
- (b) $f_{n+1} \leq f_n$ for all n,
- (c) $\lim_{n \to \infty} f_n(x) = 0$ for all $x \in \mathbb{R}$.

Prove that $f_n \rightrightarrows 0$ converges uniformly to 0.

Proof. WRITE YOUR SOLUTION HERE.

Problem 103. Let $F: \mathbb{R}^n \to \mathbb{R}$ be a norm, that is for all $x, y \in \mathbb{R}^n$ and $t \in \mathbb{R}$,

- (a) $F(x) \ge 0$ and F(x) = 0 if and only if x = 0,
- (b) $F(x+y) \le F(x) + F(y)$,
- (c) F(tx) = |t|F(x).

Prove that there are constants A, B > 0 such that

$$A||x|| \le F(x) \le B||x||$$
 for all $x \in \mathbb{R}^n$.

Proof. WRITE YOUR SOLUTION HERE.

Problem 104. Prove that if X is a metric space and $f: X \times [0,1] \to \mathbb{R}$ is continuous, then

$$g: X \to \mathbb{R}, \quad g(x) = \sup_{t \in [0,1]} f(x,t)$$

is continuous.

Proof. WRITE YOUR SOLUTION HERE.

Problem 105. Prove that is $A \subset X$ is a dense subset of a metric pace X, and $f : A \to \mathbb{R}$ is continuous, then there is a unique function $F : X \to \mathbb{R}$ such that F(x) = f(x) for all $x \in A$. Prove then that F is uniformly continuous.

Proof. WRITE YOUR SOLUTION HERE.

Problem 106. Let $f: A \to X$ be a mapping between a dense subset $A \subset \mathbb{R}^n$ and a complete metric space (X,d). Assume that $d(f(x),f(y)) \leq |x-y|$ for all $x,y \in A$.

- (a) Prove that there is a mapping $F: \mathbb{R}^n \to X$ such that $d(F(x), F(y)) \leq |x y|$ for all $x, y \in \mathbb{R}^n$ and F(x) = f(x) whenever $x \in A$.
- (b) Provide an example showing that the claim in (a) is not true if we do not assume that the space (X, d) is complete.

Proof. WRITE YOUR SOLUTION HERE.

Problem 107. Show that the Hilbert cube

$$\mathcal{H} = \{ x = (x_1, x_2, \dots) : 0 \le x_n \le 2^{-n} \text{ for each } n \in \mathbb{N} \}$$

is compact when equipped with the ℓ^1 metric $d(x,y) = \sum_{n=1}^{\infty} |x_n - y_n|$.

Proof. WRITE YOUR SOLUTION HERE.

Problem 108. Let $f_n : \mathbb{R}^k \to \mathbb{R}^m$ be continuous maps (n = 1, 2, ...) Let $K \subset \mathbb{R}^k$ be compact. Prove that if $f_n \rightrightarrows f$ uniformly on K, then the set

$$S = f(K) \cup \bigcup_{n=1}^{\infty} f_n(K)$$
 is compact.

Proof. WRITE YOUR SOLUTION HERE.

Problem 109. Let $f_n: X \to \mathbb{R}$, n = 1, 2, ... be a sequence of continuous functions on a metric space X such that the series $\sum_{n=1}^{\infty} f_n(x)$ converges for all $x \in X$ and

$$\sup_{x \in X} \left(\sum_{n=1}^{\infty} f_n(x)^2 \right)^{1/2} < \infty.$$

Prove that if a series of real numbers c_n , $n=1,2,\ldots$ satisfies $\sum_{n=1}^{\infty} c_n^2 < \infty$, then the series

$$\sum_{n=1}^{\infty} c_n f_n(x)$$

converges uniformly to a continuous function.

Proof. WRITE YOUR SOLUTION HERE.

Problem 110. A graph of a mapping $f: X \to Y$ is defined as

$$G_f = \{(x, y) \in X \times Y : y = f(x)\}.$$

Prove that if X is a metric space and Y is a compact metric space, then the map $f: X \to Y$ is continuous if and only if G_f is a closed subset of $X \times Y$.

Proof. WRITE YOUR SOLUTION HERE.

Problem 111. Let (X, d) be a compact metric space and $z \in Z$. Let $T: X \to X$ be a maping that satisfies $d(x, y) \leq d(T(x), T(y))$ for all $x, y \in X$, that is the distances are non-decreasing under the mapping T. Define $\{x_n\}$ by

$$x_1 = T(z)$$
 and $x_{n+1} = T(x_n)$ for $n \ge 1$.

Prove that there is a subsequence of $\{x_n\}$ which converges to z.

Proof. WRITE YOUR SOLUTION HERE.

Problem 112. Let (X, d) be a compact metric space and $f: X \to \mathbb{R}$ be a continuous function. Prove that for any $\varepsilon > 0$, there is C > 0 such that

$$|f(x) - f(y)| \le Cd(x, y) + \varepsilon$$
 for all $x, y \in X$.

Proof. WRITE YOUR SOLUTION HERE.

Problem 113. Let (X, d) be a metric space and $f: X \to X$ be a contraction mapping. Prove that if a non-empty and compact set $K \subset X$ satisfies f(K) = K, then K contains exactly one point.

Proof. WRITE YOUR SOLUTION HERE.

Problem 114. Let (X,d) be a compact metric space. Prove that if $f: X \to X$ satisfies d(f(x), f(y)) < d(x, y) for all $x, y \in X$, $x \neq y$, then, there is a unique point $x \in X$ such that f(x) = x.

Proof. WRITE YOUR SOLUTION HERE.

Problem 115. Find an example of a function $f: \mathbb{R} \to \mathbb{R}$ such that

$$|f(x) - f(y)| < |x - y|$$
 for all $x, y \in \mathbb{R}, x \neq y$.

and f has no fixed point. You can find an explicit formula for f, but you do not have to. It is enough if you find a convincing argument that such a function exists. You do not have to be very precise, but your argument has to be convincing.

Proof. WRITE YOUR SOLUTION HERE. \Box