Homework 2 for Math 1540

Due day: February 14, Canvas.

Problem 11. Let $(x_n)_{n=1}^{\infty}$ be a sequence of points in \mathbb{R}^3 such that $|x_{n+1} - x_n| \le 1/(n^2 + n)$, $n \ge 1$. Show that (x_n) converges.

Proof.

Problem 12. Let $F: \mathbb{R}^n \to \mathbb{R}$ be a norm, that is for all $x, y \in \mathbb{R}^n$ and all $t \in \mathbb{R}$ we have

- (1) $F(x) \ge 0$ and F(x) = 0 if and only if x = 0,
- (2) $F(x+y) \le F(x) + F(y)$,
- (3) F(tx) = |t|F(x).

Prove the following statements:

- (a) F is bounded on the unit sphere.
- (b) F is continuous.
- (c) There are constants A, B > 0 such that $A||x|| \le F(x) \le B||x||$, for all $x \in \mathbb{R}^n$.

Hint. It is useful to represent $v \in \mathbb{R}^n$ in a standard basis. For part (c) think what happens on the unit sphere.

Proof. \Box

Problem 13. Prove that (\mathbb{R}^n, ϱ) , where

$$\varrho(x,y) = \frac{|x-y|}{1+|x-y|}$$

is a metric space.

Proof.

Problem 14. For what values of $\alpha > 0$, $(\mathbb{R}^n, \varrho_\alpha)$, is a metric space, where

$$\varrho_{\alpha}(x,y) = |x - y|^{\alpha}.$$

Proof. \Box

Problem 15. Prove that if $A \subset X$ is a subset of a separable metric space, then (A, d) is separable.

Proof.

Problem 16. Prove that if $E_2 \subset E_2 \subset E_3 \subset \ldots$ is a decreasing sequence of non-empty closed sets in a complete metric space and diam $E_n = \sup_{x,y \in E_n} d(x,y) \to 0$ as $n \to \infty$, then $\bigcap_{n=1}^{\infty} E_n \neq \emptyset$.

Proof.

Problem 17. Let $f_n: X \to \mathbb{R}$, n = 1, 2, ... be a sequence of continuous functions on a metric space X such that the series $\sum_{n=1}^{\infty} f_n(x)$ converges for all $x \in X$ and

$$\sup_{x \in X} \left(\sum_{n=1}^{\infty} f_n(x)^2 \right)^{1/2} < \infty.$$

Prove that if a sequence of real numbers c_n , $n=1,2,\ldots$ satisfies $\sum_{n=1}^{\infty} c_n^2 < \infty$, then the series

$$\sum_{n=1}^{\infty} c_n f_n(x)$$

converges everywhere to a continuous function.

Proof.

Problem 18. Prove that if $x \in \ell^2$ and $r > 0$, then the ball $\bar{B}(x,r)$ in ℓ^2 is not compact.	
Proof.	
Problem 19. Prove that ℓ^2 is separable.	
Proof.	
Problem 20. Provide a simple example of a metric space that is complete and not separable.	
Proof.	