Homework 5 for Math 1540

Due day: March 18, Canvas.

Problem 39. Let $A = [a_{ij}]$ be the matrix of a linear mapping $A \in L(\mathbb{R}^n, \mathbb{R}^m)$. Prove that the norm

$$||A|| = \sup_{||x||=1} ||Ax||$$

satisfies the inequality

$$||A|| \le \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2}$$

Hint: You may use the following argument: Write the components of the vector Ax as scalar products of rows on A and x. Then use the Schwarz inequality to estimate the length of the vector Ax.

Proof. \Box

Problem 40. Prove directly from the definition (do not use the Sylvester theorem) that the matrix

$$\left[\begin{array}{cc} a & b \\ b & d \end{array}\right]$$

is positive definite iff a > 0 and $ad - b^2 > 0$

Proof.

Problem 41. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable and $F: \mathbb{R}^2 \to \mathbb{R}$ be defined by F(x,y) = f(xy). Prove that

$$x\frac{\partial F}{\partial x} = y\frac{\partial F}{\partial y}.$$

Proof.

Problem 42. We say that a function $f: \mathbb{R}^n \to \mathbb{R}$ is homogeneous of degree m if $f(tx) = t^m f(x)$ for all $x \in \mathbb{R}^n$ and all t > 0. Prove that if f is differentiable on \mathbb{R}^n and homogeneous of degree m, then

$$\sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i}(x) = mf(x) \quad \text{for all } x \in \mathbb{R}^n.$$

Proof.

Problem 43. We know that a function f(x,y) is differentiable at (0,0). We also know the directional derivatives

$$D_u f(0,0) = 1$$
 where $u = [1/\sqrt{5}, 2/\sqrt{5}],$
 $D_v f(0,0) = 1$ where $v = [1/\sqrt{2}, 1/\sqrt{2}].$

Find the gradient $\nabla f(0,0)$.

Proof. \Box

Problem 44. Let $f \in C^1(\mathbb{R}^2)$ be such that f(1,1) = 1 and $\nabla f(1,1) = (a,b)$. Let $\varphi(x) = f(x, f(x, f(x, x)))$. Find $\varphi(1)$ and $\varphi'(1)$.

Proof. \Box

Problem 45. A function $f:\mathbb{R}^n\to\mathbb{R}$ is differentiable. Find the derivative of the function

$$F(t) = (f(t, t^2, \dots, t^n))^2, \quad t \in \mathbb{R}$$

of one variable.

Proof.

Problem 46. Verify by a direct computation that the vector field $F(x) = x|x|^{-n}$ defined on $\mathbb{R}^n \setminus \{0\}$ is divergence free, i.e.

$$\operatorname{div} F(x) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(\frac{x_i}{|x|^n} \right) = 0 \quad \text{for all } x \neq 0.$$

Proof.

Problem 47. Prove that for $\alpha > 0$ the function $\Phi : \mathbb{R}^n \to \mathbb{R}^n$,

$$\Phi(x) = x|x|^{\alpha}$$

is of class C^1 . Find $D\Phi(x)$.

Proof.

Problem 48. Find all the points $(x,y) \in \mathbb{R}^2$ where the function

$$f(x,y) = |e^x - e^y| \cdot (x + y - 2)$$

is differentiable.

Proof. \Box

Problem 49. Consider the function $g: \mathbb{R}^2 \to \mathbb{R}$ given by

$$g(x,y) = x^{2/3}y^{2/3}$$
, for all $(x,y) \in \mathbb{R}^2$.

Prove that g is differentiable at (0,0).

Proof.

Problem 50. Prove that is the partial derivatives (of first order) of a function $f: \mathbb{R}^n \to \mathbb{R}$ exist everywhere and they are bounded, then the function f is continuous.

Proof.

Problem 51. Prove that if $f, g \in C^k(\Omega)$, $\Omega \subset \mathbb{R}^n$, then for any multiindex α with $|\alpha| \leq k$ we have

$$D^{\alpha}(fg) = \sum_{\beta < \alpha} {\alpha \choose \beta} D^{\beta} f D^{\alpha - \beta} g,$$

where $\beta \leq \alpha$ means that $\beta_i \leq \alpha_i$ for $i = 1, 2, ..., n, \alpha - \beta = (\alpha_1 - \beta_1, ..., \alpha_n - \beta_n)$ and

$$\binom{\alpha}{\beta} = \frac{\alpha!}{\beta!(\alpha - \beta)!}.$$

Proof.

Problem 52. Let $f \in C^2(\mathbb{R}^2)$. Suppose that $\nabla f = 0$ on a compact set $E \subset \mathbb{R}^2$. Prove that there is a constant M > 0 such that $|f(x) - f(y)| \leq M|x - y|^2$ for all $x, y \in E$.

Proof.

Problem 53.[A smooth function with compact support]

Consider an open ball $B = B(a, r) \subset \mathbb{R}^n$. Prove that the function

$$\varphi(x) = \left\{ \begin{array}{ll} \exp\left(\frac{1}{|x-a|^2 - r^2}\right) & \text{if } x \in B, \\ 0 & \text{if } x \in \mathbb{R}^n \setminus B, \end{array} \right.$$

in infinitely differentiable on \mathbb{R}^n .

Proof.