Analysis 1: homework # 3

Due day: Friday October 16, 2015

NAME (print):

Circle the problems that you have solved:

15 16 17 18 19 20 21 22 23 24

The solutions must be written in a **legible** form. The front page **must** be returned. All the papers **must** be stapled.

Problem 15. Let ℓ^{∞} be a metric space of all real bounded sequences $x = (x_1, x_2, x_3, ...)$ with the metric $||x - y||_{\infty} = \sup_i |x_i - y_i|$. Prove that there is an uncountable family of pairwise disjoint balls in ℓ^{∞} (and hence ℓ^{∞} is not separable). **Hint:** You can use (without a proof) the fact that the family of subsets of \mathbb{N} is uncountable.

Problem 16. Let $K \subset \mathbb{R}^n$ be compact and let $K_{\varepsilon} = \{x : \operatorname{dist}(x, K) < \varepsilon\}$. Prove that $|K_{\varepsilon}| \to |K|$ as $\varepsilon \to 0$. Show an example of a non-compact set for which this statement is no longer true.

Problem 17. Let $U \subset \mathbb{R}^n$ be an open set. Prove that there is a sequence of pairwise disjoint closed balls $\overline{B}_i \subset U$, $i = 1, 2, 3, \ldots$ such that $|U \setminus \bigcup_{i=1}^{\infty} \overline{B}_i| = 0$.

Problem 18. For $f:[0,1]\to\mathbb{R}$ let $E\subset\{x:f'(x)\text{ exists}\}$. Prove that if |E|=0, then |f(E)|=0.

Problem 19. Show that for any Lebesgue measurable set $E \subset \mathbb{R}$ with |E| = 1 there is a Lebesgue measurable subset $A \subset E$ such that $|A| = \frac{1}{2}$.

Problem 20. Let $A \subset [0,1]$ be a measurable set of positive measure. Show that there exist two points $x, y \in A$, $x \neq y$ such that x - y is a rational number.

Problem 21. Suppose that $f_n: X \to [0, \infty]$ is a sequence of measurable functions such that $f_1 \in L^1(\mu)$ and $f_1 \geq f_2 \geq \ldots \geq 0$, $f_n(x) \to f(x)$ for every $x \in X$. Prove that

$$\lim_{n \to \infty} \int_X f_n(x) \, d\mu = \int_X f(x) \, d\mu.$$

Show also that the assumption $f_1 \in L^1(\mu)$ cannot be removed.

Problem 22. Prove that if f_n converges in measure to f and converges in measure to g, then f = g a.e.

Problem 23. Show an example of a sequence of measurable functions $f_n:[0,1]\to\mathbb{R}$ that converge to the function f=0 in measure but not a.e.

Problem 24. Show an example of a sequence $f_n : \mathbb{R} \to \mathbb{R}$ of measurable functions that converge of a function f a.e. but not in measure.