Analysis 1: homework # 2

Due day: Friday September 4, 2020

NAME (print):

If you do **not** have a complete solution do not submit it as you will get negative points for an incomplete solution. All solutions have to be written in LaTeX using this template and submitted as a pdf file.

Problem 8. Let \mathcal{C} be the collection of all uncountable sets in \mathbb{R} . Prove that the σ -algebra generated by \mathcal{C} is the power set $\mathcal{P}(\mathbb{R})$.

Proof. (Write your solution here.)

Problem 9. Prove that the σ -algebra generated by intervals (a, ∞) , $a \in \mathbb{R}$ coincides with the σ -algebra of all Borel sets $\mathfrak{B}(\mathbb{R})$.

Proof. (Write your solution here.)

Problem 10. Prove that the intersection of two F_{σ} -sets is F_{σ} .

Proof. (Write your solution here.)

Problem 11. Prove that the set of rational numbers is not G_{δ} .

Proof. (Write your solution here.)

Problem 12. Prove that if $0 < s < \infty$ and $E \subset X$ is a subset of a metric space, then

 $\mathcal{H}^s(E) = 0$ if and only if $\mathcal{H}^s_{\infty}(E) = 0$.

Remark. Recall that $\mathcal{H}_{\infty}^{s}(E) = \inf \frac{\omega_{s}}{2^{s}} \sum_{i=1}^{\infty} (\operatorname{diam} A_{i})^{s}$, where the infimum is taken over all coverings $E \subset \bigcup_{i=1}^{\infty} A_{i}$, diam $A_{i} < \infty$.

Proof. (Write your solution here.)

Problem 13. Show an example of a set such that $\mathcal{H}^s(E) > \mathcal{H}^s_{\varepsilon}(E)$ for some s > 0 and all $\varepsilon > 0$.

Proof. (Write your solution here.)