Analysis 1: homework # 3

Due day: Friday September 18, 2020

NAME:

If you do **not** have a complete solution do not submit it as you will get negative points for an incomplete solution. All solutions have to be written in LaTeX using this template and submitted as a pdf file.

Problem 14. Prove that if X is a locally compact separable metric space, then there are open sets $\{U_i\}_{i=1}^{\infty}$ such that

$$X = \bigcup_{i=1}^{\infty} U_i$$
 and \overline{U}_i is compact.

Proof. (Write your solution here.)

Problem 15. Does there exist an enumeration $\{r_n\}_{n=1}^{\infty}$ of the rationals, such that the complement of

$$\bigcup_{n=1}^{\infty} \left(r_n - \frac{1}{n}, r_n + \frac{1}{n} \right)$$

is \mathbb{R} is non-empty?

Proof. (Write your solution here.)

Problem 16. Let A be the subset of [0,1] which consists of all numbers which do not have the digit 4 appearing in their decimal expansion. Find $\mathcal{L}_1(A)$.

Proof. (Write your solution here.)

Problem 17. Suppose $\{E_k\}_{k=1}^{\infty}$ is a countable family of measurable subsets of \mathbb{R}^n such that $\sum_{k=1}^{\infty} \mathcal{L}_n(E_k) < \infty$ and let

$$E = \{x \in \mathbb{R}^n : x \in E_k \text{ for infinitely many } k\}.$$

Show that E is measurable and that $\mathcal{L}_n(E) = 0$.

Proof. (Write your solution here.)

Problem 18. Let $K \subset \mathbb{R}^2$ be a compact set and let $\pi : \mathbb{R}^2 \to \mathbb{R}$ be the orthogonal projection onto the x-axis. Prove that if $\pi(K) = [0, 1]$, then $\mathcal{H}^1(K) \geq 1$.

Proof. (Write your solution here.)

Problem 19. You can use the fact that if $S^1 \subset \mathbb{R}^2$ is the unit circle, then $\mathcal{H}^1(S^1) = 2\pi$. Assume that $\phi: S^1 \to \mathbb{R}^2$ is a map such that for some $L \geq 1$ and 0 < s < 1 we have

$$\frac{1}{L}|x-y|^s \le |\phi(x)-\phi(y)| \le L|x-y|^s \quad \text{for all } x,y \in S^1.$$

Find $\dim_H(\phi(S^1))$.

Proof. (Write your solution here.)