Analysis 1: homework # 5

Due day: Friday October $2+\varepsilon$, 2020, for some $\varepsilon \geq 0$ (possibly large)

NAME:

If you do **not** have a complete solution do not submit it as you will get negative points for an incomplete solution. All solutions have to be written in LaTeX using this template and submitted as a pdf file.

Problem 36. Let $U \subset \mathbb{R}^n$ be an open set. Prove that there is a sequence of pairwise disjoint closed balls $\overline{B}_i \subset U$, $i = 1, 2, 3, \ldots$ such that $|U \setminus \bigcup_{i=1}^{\infty} \overline{B}_i| = 0$.

Proof. (Write your solution here.)

Problem 37. For $f:[0,1]\to\mathbb{R}$ let $E\subset\{x:f'(x)\text{ exists}\}$. Prove that if |E|=0, then |f(E)|=0.

Proof. (Write your solution here.) \Box

Problem 38. Show that for any Lebesgue measurable set $E \subset \mathbb{R}$ with |E| = 1 there is a Lebesgue measurable subset $A \subset E$ such that $|A| = \frac{1}{2}$.

Proof. (Write your solution here.)

Problem 39. Let $A \subset [0,1]$ be a measurable set of positive measure. Show that there exist two points $x, y \in A$, $x \neq y$ such that x - y is a rational number. (Prove it directly without using Steinhaus' theorem).

Proof. (Write your solution here.)

Problem 40. Suppose that $f_n: X \to [0, \infty]$ is a sequence of measurable functions such that $f_1 \in L^1(\mu)$ and $f_1 \geq f_2 \geq \ldots \geq 0$, $f_n(x) \to f(x)$ for every $x \in X$. Prove that

$$\lim_{n \to \infty} \int_X f_n(x) \, d\mu = \int_X f(x) \, d\mu.$$

Show also that the assumption $f_1 \in L^1(\mu)$ cannot be removed.

Proof. (Write your solution here.)

Problem 41. Let \mathfrak{M} be a σ -algebra of subsets of X that contains countably many nonempty pairwise disjoint sets. Prove that \mathfrak{M} is uncountable.

Proof. (Write your solution here.)

Problem 42. Prove that if \mathfrak{M} is an infinite σ -algebra, then it is uncountable.

Remark. Note that the assumptions are weaker than in Problem 41 and clearly Problem 41 follows from Problem 42.

Proof. (Write your solution here.) \Box

Problems 43-46 provide a proof that the Vitali set is not Borel without using the Lebesgue measure.

Definition. A set in a metric space is *nowhere dense* if its closure has no interior points. A set that is a union of countably many nowhere dense sets is called a *set of first category*. A set that is not of first category is called a set of *second category*.

Definition. A subset A of a metric space is called almost open if there is an open set U such that the symmetric difference $A\Delta U$ is of first category i.e., it is a union of countably many nowhere dense sets.

Problem 43. Prove that if X is a complete metric space, then X is of the second category. **Hint.** This is just the Baire category theorem.

Proof. (Write your solution here.) \Box

Problem 44. Prove that a family of almost open sets in a metric spaces is a σ -algebra.

Proof. (Write your solution here.)

Problem 45. Prove that every Borel set is almost open.

Proof. (Write your solution here.) \Box

Problem 46. Prove that the Vitali set is not almost open and hence it is not Borel.

Proof. (Write your solution here.) \Box

Problem 47. Prove that if $A \subset \mathbb{R}^n$ and $B \subset \mathbb{R}^m$ are Lebesgue measurable, then

$$\mathcal{L}_{n+m}(A \times B) = \mathcal{L}_n(A)\mathcal{L}_m(B).$$

Proof. (Write your solution here.)

Problem 48. Prove that there is a *finitely additive* measure defined on all subsets of positive integers \mathbb{N} , with values into $\{0,1\}$, (only two values) that is

$$\mu: 2^{\mathbb{N}} \to \{0,1\}$$

such that $\mu(\{n\}) = 0$ for every $n \in \mathbb{N}$ and $\mu(\mathbb{N}) = 1$.

Hint. Non-principal ultrafilter. Clearly μ cannot be countably additive as $\mu(\{n\}) = 0$ would imply that $\mu(\mathbb{N}) = 0$.

Proof. (Write your solution here.) \Box

Definition. We say that a function $\phi : \mathbb{R} \to \mathbb{R}$ is *Cauchy* if

(1)
$$\phi(x+y) = \phi(x) + \phi(y) \quad \text{for all } x, y \in \mathbb{R}.$$

Clearly linear functions $\phi(x) = ax$ are Cauchy.

Problem 49. Prove that if a Cauchy function is continuous, then it is linear.

Proof. (Write your solution here.)	
Problem 50. Prove that if a Cauchy function is continuous at 0, then it is linear.	
Proof. (Write your solution here.)	
Problem 51. Prove that there is a Cauchy function such that $\phi(1) = 0$ and $\phi(\pi) = 1$. Hint. Clearly, this functions cannot be linear. To prove existence of ϕ regard \mathbb{R} as a linear spectrum over the field of rational numbers \mathbb{Q} and use the Hamel basis.	ace
Proof. (Write your solution here.)	
Problem 52. Prove that is a Cauchy function is not linear, then it is not Lebesgue measurable. Hint. Use the Steinhaus theorem or use the Lusin theorem.	
Proof. (Write your solution here.)	