Analysis 1: homework # 6

Due day: Friday October 23, 2020.

NAME:

If you do **not** have a complete solution do not submit it as you will get negative points for an incomplete solution. All solutions have to be written in LaTeX using this template and submitted as a pdf file.

Problem 53. Prove that if f_n converges in measure to f and converges in measure to g, then f = g a.e.

Proof. (Write your solution here.) \Box

Problem 54. Show an example of a sequence of measurable functions $f_n:[0,1]\to\mathbb{R}$ that converge to the function f=0 in measure but not a.e.

Proof. (Write your solution here.) \Box

Problem 55. Show an example of a sequence $f_n : \mathbb{R} \to \mathbb{R}$ of measurable functions that converge of a function f a.e. but not in measure.

Proof. (Write your solution here.) \Box

Problem 56. Suppose that $f_n \to f$ in measure and $g_n \to g$ in measure. Show that $f_n g_n \to f g$ in measure if $\mu(X) < \infty$. Show that the claim is not necessarily true if $\mu(X) = \infty$.

Proof. (Write your solution here.) \Box

Problem 57. Let μ be the counting measure on the set of positive integers \mathbb{N} and let $f_n, f : \mathbb{N} \to \mathbb{R}$ be given functions. Prove that $f_n \to f$ in measure as $n \to \infty$ if and only if $f_n \to f$ uniformly.

Proof. (Write your solution here.) \Box

Problem 58. Let X be a metric space and let μ be a σ -finite measure on $\mathfrak{B}(X)$. Prove that for every $x \in X$ and almost all r > 0

$$\mu(S(x,r)) = 0$$
, where $S(x,r) = \{z \in X : d(z,x) = r\}$.

Proof. (Write your solution here.)

Problem 59. Show an example of a continuous function between metric spaces $f: X \to Y$ such that the function $N_f: Y \to [0, \infty]$ is not Borel, where $N_f(y)$ is the number of points in the set $f^{-1}(y)$.

Proof. (Write your solution here.) \Box

Problem 60. Let $f: X \to Y$ be a continuous an surjective map between compact metric spaces. Prove that there is a Borel set $B \subset X$ such that f(B) = Y, f is one-to-one on B and $f^{-1}: Y \to B$ is Borel.

Remark. In other words, we can select from each of the sets f^{-1} exactly one point in a way that the resulting inverse function is Borel.

Proof. (Write your solution here.)

Problem 61. Prove that if Y is a compact metric space, then the metric space of continuous functions C(Y) is separable.

Hint. Use the Stone-Weierstrass theorem and distance functions $y \mapsto d(y_o, y)$.

Proof. (Write your solution here.) \Box

Problem 62. Let X be a compact metric space and μ a finite measure on $\mathfrak{B}(X)$. Let Y be another compact metric space. Assume that a function $f: X \times Y \to \mathbb{R}$ has the following properties

(a) For every $y \in Y$,

$$f^{y}(\cdot) = f(\cdot, y) : X \to \mathbb{R}$$
 is Borel;

(b) For every $x \in X$,

$$f_x(\cdot,y):Y\to\mathbb{R}$$

is continuous.

Prove that for any $\varepsilon > 0$ there is a compact set $K \subset X$ such that $\mu(X \setminus K) < \varepsilon$ and the restriction of f to $K \times Y$,

$$f: K \times Y \to \mathbb{R}$$

is continuous.

Hint. Use previous problem.

Remark. Similar functions often appear in the calculus of variations. The above result can be regarded as a generalization of the Lusin theorem.

Proof. (Write your solution here.) \Box

Problem 63. Prove that if X and Y are metric spaces, then $\mathfrak{B}(X) \times \mathfrak{B}(Y) \subset \mathfrak{B}(X \times Y)$. Prove that if in addition, the metric spaces X and Y are separable, then $\mathfrak{B}(X) \times \mathfrak{B}(Y) = \mathfrak{B}(X \times Y)$.

Proof. (Write your solution here.) \Box

Problem 64. Show an example that the Fubini theorem is not true if the measures are not σ -finite.

Proof. (Write your solution here.)

Problem 65. Prove that if $f: \mathbb{R}^n \to \mathbb{R}$ is Lebesgue measurable, then the graph of f,

$$G_f = \{(x, f(x)) : x \in \mathbb{R}^n\} \subset \mathbb{R}^{n+1}$$

has (n+1)-dimensional Lebesgue measure zero.

Proof. (Write your solution here.)

Problem 66. Prove that if $f: \mathbb{R}^n \to [0, \infty)$ is Lebesgue measurable, then the set

$$U_f = \{(x, y) \in \mathbb{R}^n \times \mathbb{R} : x \in \mathbb{R}^n, \ 0 \le y \le f(x)\} \subset \mathbb{R}^{n+1}$$

is Lebesgue measurable and

$$\mathcal{L}_{n+1}(U_f) = \int_{\mathbb{R}^n} f \, d\mathcal{L}_n.$$

Proof. (Write your solution here.)

Definition. Let (X, μ) be a complete measure space. For a function $f: X \to [0, \infty]$ defined μ -a.e. on X, the *upper integral* is defined by

$$\int_X^* f \ d\mu = \inf \int_X \phi \, d\mu \,,$$

where the infimum is taken over all μ -measurable functions ϕ satisfying $0 \le f(x) \le \phi(x)$ for μ -a.e. $x \in X$. We do note require f to be measurable. Clearly, for measurable functions the upper integral coincides with the Lebesgue one.

Problem 67. Prove that if $\int_X^* f \, d\mu = 0$, then f = 0 μ -a.e. and hence it is measurable.

Proof. (Write your solution here.)

Problem 68. (Non-measurable monotone convergence theorem.) Let $f_n: X \to [0, \infty]$ be a monotone sequence of (not necessarily measurable) functions, i.e. $0 \le f_1(x) \le f_2(x) \le \dots$ for μ -a.e. $x \in X$. Prove that if $f(x) := \lim_{n \to \infty} f_n(x)$, then

(1)
$$\lim_{n \to \infty} \int_X^* f_n \, d\mu = \int_X^* f \, d\mu \, .$$

Proof. (Write your solution here.)

Definition. We say $\phi: X \to [0, \infty]$ is a *step function* if it is μ -measurable and attains at most countably many values (we allow infinite values). That is, ϕ is a step function if there exist disjoint μ -measurable subsets $A_i \subset X$ and $0 \le a_i \le \infty$ such that

$$\phi(x) = \sum_{i=1}^{\infty} a_i \chi_{A_i}(x) .$$

Note that the difference with the definition of a simple function is that a simple function is finite and has only finitely many values.

Problem 69. Let $f: X \to [0, \infty]$ be any function. Prove that

$$\int_X^* f \ d\mu = \inf \int_X \phi \, d\mu \,,$$

where the infimum is over all step functions ϕ satisfying $0 \le f(x) \le \phi(x)$ for all $x \in X$.

Proof. (Write your solution here.)

Problem 70. Let \mathcal{F} be any family of Lebesgue measurable functions $f: \mathbb{R}^n \to \mathbb{R}$. Prove that there is a Lebesgue measurable function $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ with the following two properties.

- (a) For all $f \in \mathcal{F}$ we have $f \leq g$ a.e.
- (b) If $h: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is Lebesgue measurable and for all $f \in \mathcal{F}$ we have $f \leq h$ a.e., then $g \leq h$ a.e.

Remark. In the case in which family \mathcal{F} is countable, we can define g as the supremum of all functions in the family \mathcal{F} . However, if the family is uncountable, taking supremum does not make much sense.

Hint. To make the problem easier you can assume that the functions are defined on a subset of \mathbb{R}^n of finite measure and that all functions are uniformly bounded: $|f| \leq M$ for all $f \in \mathcal{F}$. Then define g as a carefully selected countable subfamily of \mathcal{F} .

Proof. (Write your solution here.)

Problem 71. Prove without using any linear algebra that if $T: \mathbb{R}^n \to \mathbb{R}^n$ is an isometry, then for any set $A \subset \mathbb{R}^n$,

$$\mathcal{L}_n^*(T(A)) = \mathcal{L}_n^*(A).$$

Hint. Use Problem 36.

Proof. (Write your solution here.) \Box