Analysis 1: homework # 7

Due day: Wednesday November 18, 2020.

NAME:

If you do **not** have a complete solution do not submit it as you will get negative points for an incomplete solution. All solutions have to be written in LaTeX using this template and submitted as a pdf file.

Problem 72. Prove directly from the definition of the Lebesgue measure and the definition of the integral that if $u \in L^1(\mathbb{R}^n)$ (with respect to the Lebesgue measure), then for every $y \in \mathbb{R}^n$ and t > 0

$$\int_{\mathbb{R}^n} u(x) \, dx = \int_{\mathbb{R}^n} u(-x) \, dx = \int_{\mathbb{R}^n} u(x+y) \, dx = t^{-n} \int_{\mathbb{R}^n} u(x/t) \, dx.$$

Proof. (Write your solution here.)

Problem 73. Prove directly from the definition of the Lebesgue measure and the definition of the integral that

$$\int_{\mathbb{R}^n \backslash B(0,1)} \frac{dx}{|x|^{\alpha}} < \infty$$

if and only if $\alpha > n$.

Proof. (Write your solution here.)

Problem 74. Prove directly from the definition of the Lebesgue measure and the definition of the integral (you can use Problem 72) that

$$\int_{|x| \ge r} \frac{dx}{|x|^{n+1}} = \frac{C(n)}{r},$$

where C(n) is a constant that depends on n only.

Proof. (Write your solution here.)

Problem 75. Let $a_i > 0$, $1 \le i \le n$. Prove that

$$\int_{[0,1]^n} \frac{dx}{x_1^{a_1} + \dots + x_n^{a_n}} < \infty \quad \text{if and only if} \quad \sum_{i=1}^n \frac{1}{a_i} > 1.$$

Proof. (Write your solution here.)

Problem 76. Let μ be the counting measure on \mathbb{R} . Then $\mu \times \mathcal{L}_1$ is a measure on \mathbb{R}^2 . Let S be the unit circle in \mathbb{R}^2 , and χ_S its characteristic function. Prove that

$$\int_{\mathbb{R}} \int_{\mathbb{R}} \chi_S \, d\mathcal{L}_1 \, d\mu \neq \int_{\mathbb{R}} \int_{\mathbb{R}} \chi_S \, d\mu \, d\mathcal{L}_1 \, .$$

Explain why it is not a contradiction with the Fubini theorem.

Proof. (Write your solution here.)

Problem 77. Prove that

$$\int_{\mathbb{R}^n} |f(x)|^{2020} dx = 2020 \int_0^\infty t^{2019} |\{x: |f(x)| > t\}| dt.$$

Proof. (Write your solution here.)

Problem 78. Integrate the function $xe^{-x^2(1+y^2)}$ over $(0,\infty)\times(0,\infty)$ in two different ways and conclude that

$$\int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

Proof. (Write your solution here.)

Problem 79. By integrating e^{-xy} over an appropriate region, show that

$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} dx = \log \frac{b}{a}, \quad a, b > 0.$$

Proof. (Write your solution here.)

Problem 80. Prove that if

$$f(x,t) = \frac{x^2 - y^2}{(x^2 + y^2)^2},$$

then $f \notin L^1([0,1] \times [0,1])$.

Proof. (Write your solution here.)

Problem 81. Provide an example of a sequence $f_n \in L^p([0,1])$, $1 \le p < \infty$ which converges a.e. but not in L^p to a function $f \in L^p([0,1])$.

Proof. (Write your solution here.)

Problem 82. Provide an example of a sequence $f_n \in L^p([0,1]), 1 \le p < \infty$ which converges in L^p but not a.e. to a function $f \in L^p([0,1])$.

Proof. (Write your solution here.)

The integral average is often denoted as a barred integral:

$$\int_X f \, d\mu = \mu(X)^{-1} \int_X f \, d\mu.$$

Problem 83. Prove that if $0 < \mu(X) < \infty$, then $\left(\oint_X |f|^p d\mu \right)^{1/p} \le \left(\oint_X |f|^q d\mu \right)^{1/q}$ for all 0 .

Proof. (Write your solution here.)

Problem 84. Prove that if $f \in L^r$ for some $r < \infty$, then $\lim_{p \to \infty} ||f||_p = ||f||_{\infty}$.

Proof. (Write your solution here.)

Problem 85. Prove that if $\mu(X) = 1$ and $||f||_r < \infty$ for some r > 0, then

$$\lim_{p \to 0} ||f||_p = \exp\left(\int_X \log|f| \, d\mu\right)$$

where $\exp(-\infty)$ is defined to be 0.

Proof. (Write your solution here.)

Problem 86. Let $f \ge 0$, $g \ge 0$ belong to L^p for some $0 . Prove that <math>||f + g||_p \ge ||f||_p + ||g||_p$.

Proof. (Write your solution here.)

Problem 87. Prove that if

$$\int_{\mathbb{R}^n} \left| \log |f_k| \right| dx \to 0, \quad \text{as } k \to \infty,$$

then there is a subsequence f_{k_i} such that $|f_{k_i}| \to 1$ a.e.

Proof. (Write your solution here.)

Problem 88. Suppose that $p, q, r \in [1, \infty), \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$. Prove that

$$||fg||_r \le ||f||_p ||g||_q.$$

Proof. (Write your solution here.)

Problem 89. Prove that if $f \in L^p(\mu)$, 1 , then

$$||f||_p = \sup \left\{ \int_X fg \, d\mu : ||g||_q = 1 \right\},$$

where q is the Hölder conjugate exponent.

Proof. (Write your solution here.)

Problem 90. Suppose that $1 \le p < r < q < \infty$. Prove that $L^p \cap L^q \subset L^r$.

Proof. (Write your solution here.)

Problem 91. Prove that if $f, f_k \in L^1(\mu), f_k \to f$ a.e. and $||f||_1 \to ||f||_1$, then $||f_k - f||_1 \to 0$.

Proof. (Write your solution here.) \Box

Problem 92. Let $1 \leq p < \infty$. Suppose that $f_k \in L^p(\mu)$ converges μ -a.e. to $f \in L^p(\mu)$. Prove that

$$\lim_{k \to \infty} ||f_k - f||_p = 0 \quad \text{if and only if} \quad ||f||_p = \lim_{k \to \infty} ||f||_p.$$

Proof. (Write your solution here.)

Problem 93. Suppose that $1 , <math>f, g \in L^p(\mu)$ (complex valued), $||f||_p$, $||g||_p > 0$ and

$$||f + g||_p = ||f||_p + ||g||_p.$$

Prove that

$$\frac{f}{\|f\|_p} = \frac{g}{\|g\|_p} \quad \text{a.e.}$$

Hint. Look for solutions online. Read and understand them and write in your own words with all details.

Proof. (Write your solution here.)

Problem 94. Let $\tau_y f(x) = f(x+y)$. Prove that if $1 \le p < \infty$ and $f \in L^p(\mathbb{R}^n)$, then

$$\lim_{|y| \to \infty} \|\tau_y f + f\|_p = 2^{1/p} \|f\|_p.$$

Hint. Compare with Lemma 93 in my notes.

Proof. (Write your solution here.)

Problem 95. Let a function f be μ -measurable with the property that there is M > 0 such that $|f| \leq M$ a.e. Prove that if

$$||f||_{\infty} = \inf\{M > 0 : |f| \le M \text{ a.e.}\},$$

then $|f| \leq ||f||_{\infty}$ a.e.

Proof. (Write your solution here.)

Problem 96. Prove that $||x|| - ||y|| | \le ||x - y||$ in any normed space.

Proof. (Write your solution here.)