Analysis 1: homework # 8

Final exam. You need to solve 10 problems.

NAME:

All solutions have to be written in LaTeX using this template and submitted as a pdf file.

Problem 97. Let f be the function on [0,1] defined as follows: f(x) = 0 if x is a point in the Cantor set and $f(x) = 5^{-n}$ if x is in one of the intervals of length 3^{-n} that were removed in the n-th step of the construction of the Cantor set. Prove that the function f(x) is measurable and evaluate the integral $\int_0^1 f(x) dx$.

Proof. (Write your solution here.)

Problem 98. For $1 \leq p < \infty$, let $X^p(\mathbb{R}^n)$ be the space of functions $f \in L^p(\mathbb{R}^n)$ such that there is $0 \leq g \in L^p(\mathbb{R}^n)$ such that

(1)
$$|f(x) - f(y)| \le |x - y|(g(x) + g(y))$$
 a.e.,

meaning that there is $N \subset \mathbb{R}^n$, |N| = 0 so that (1) is true for all $x, y \in \mathbb{R}^n \setminus N$. Let

$$||f||_{X^p} = ||f||_p + \inf ||g||_p,$$

where the infimum is taken over all $0 \le g \in L^p(\mathbb{R}^n)$ satisfying (1). Prove that

- (a) X^p is a linear space,
- (b) $\|\cdot\|_{X^p}$ is a norm,
- (c) X^p is a Banach space.

Hint: Mimic the proof that L^p is a Banach space.

Proof. (Write your solution here.)

Problem 99. For $f \in L^1_{loc}(\mathbb{R}^n)$ and $\lambda > 0$ we define

$$\mathfrak{M}_{\lambda}f(x) = \sup_{r>0} r^{\lambda} \int_{B(x,r)} |f(z)| \, dz.$$

Prove that if $f \in L^p(\mathbb{R}^n)$, $1 \le p < \infty$, and $\lambda p < n$, then

$$\mathcal{H}_{\infty}^{n-\lambda p}\left(\left\{x:\,\mathfrak{M}_{\lambda}f(x)>t\right\}\right)\leq\frac{C(n,p,\lambda)}{t^{p}}\int_{\mathbb{R}^{n}}|f(z)|^{p}\,dz\quad\text{for all }t>0.$$

Hint: Use Hölder's inequality and mimic the proof of the Hardy-Littlewood-Wiener theorem.

Proof. (Write your solution here.)

Problem 100. Prove that no Lebesgue measurable set $E \subset \mathbb{R}$ has the property that $|E \cap [a,b]| = (b-a)/2$ for all a < b.

Proof. (Write your solution here.) \Box

Problem 101. Let $K \subset \mathbb{R}^n$ be a compact set and for r > 0 let

$$K_r = \{x \in \mathbb{R}^n : \operatorname{dist}(x, K) = r\}.$$

Prove that for any r > 0, the set K_r has measure zero, $|K_r| = 0$. Hint: Look at the density points.

Proof. (Write your solution here.)
$$\Box$$

Problem 102. Prove that if $f:[0,1] \to \mathbb{R}$ is absolutely continuous and $g:\mathbb{R} \to \mathbb{R}$ is Lipschitz continuous, then $g \circ f:[0,1] \to \mathbb{R}$ is absolutely continuous.

Proof. (Write your solution here.)
$$\Box$$

Problem 103. Prove that if $f:[a,b] \to \mathbb{R}$ is absolutely continuous, then for every a < c < d < b

$$\lim_{h \to 0} \int_{c}^{d} \left| \frac{f(x+h) - f(x)}{h} - f'(x) \right| dx = 0.$$

Hint: Represent f(x+h) - f(x) as an integral of the derivative and use an argument similar to that in the proof of Lemma 93 in my notes.

Proof. (Write your solution here.)
$$\Box$$

Problem 104. Prove that if $\mu \ll \nu$ and $\mu \perp \nu$, then $\mu = 0$.

Proof. (Write your solution here.)
$$\Box$$

Problem 105. Prove that if μ is absolutely continuous with respect to the Lebesgue measure \mathcal{L}_n and

$$\lim_{r \to 0} r^{-n} \mu(B(x, r)) = 0 \quad \text{for every } x \in \mathbb{R}^n$$

then $\mu = 0$.

Introduction to Problem 106: it is well known that there are homeomorphisms $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ with the property that for some sets $E \subset \mathbb{R}^n$ of measure zero, the set $\varphi(E)$ has positive measure.

Problem 106. Prove that if $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ is a homeomorphism, then there is a set $Z \subset \mathbb{R}^n$ of measure zero |Z| = 0 such that for each measurable set A the following implication is satisfied:

$$A \subset \mathbb{R}^n \setminus Z, |A| = 0 \implies |\varphi(A)| = 0.$$

Hint: $\mu(E) = |\varphi(E)|, E \subset \mathbb{R}^n$ defines a measure in \mathbb{R}^n . Use the Radon-Nikodym-Lebesgue theorem.

Proof. (Write your solution here.)
$$\Box$$

Problem 107. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be σ -finite. Suppose that F is $\mathcal{M} \times \mathcal{N}$ measurable. Prove the following inequality

$$\left(\int_Y \left(\int_X |F(x,y)| \, d\mu(x)\right)^p \, d\nu(y)\right)^{1/p} \leq \int_X \left(\int_Y |F(x,y)|^p \, d\nu(y)\right)^{1/p} \, d\mu(x).$$

Hint: On the left hand side we compute the L^p norm of the function $y \mapsto \int_X |F(x,y)| d\mu(x)$. An L^p function defines a functional on L^q . Hence the L^p norm equals to the supremum of certain integrals over certain functions in L^q . Use this fact in the proof of the inequality.

Proof. (Write your solution here.)