Analysis III: homework # 1

Due day: Lecture, Friday September 9, 2016

NAME (print):

Circle the problems that you have solved:

1 2 3 4 5 6 7 8 9 10 11

The solutions must be written in a **legible** form. The front page **must** be returned. All the papers **must** be stapled. **If any of the conditions is not satisfied, the homework will burned and flushed away.** The homework **will not** be returned so you better have a copy.

Problem 1. Prove that in a normed linear space X, $\lim_{n\to\infty} ||x_n - x|| = 0$ implies $\lim_{n\to\infty} ||x_n|| = ||x||$.

Problem 2. Let X be a real or complex normed space, $x, y \in X$ and $\lambda \in \mathbb{R}$. Find the limit

$$\lim_{n\to\infty} \Big(\|(n+\lambda)x + y\| - \|nx + y\| \Big).$$

Problem 3. Prove that the following two norms in the space C[0,1] are not equivalent:

$$||x||_1 = \max_{t \in [0,1]} |x(t)|$$
 and $||x||_2 = \int_0^1 |x(t)| dt$.

Problem 4. Prove that ℓ^p , $1 \le p < \infty$ is separable.

Problem 5. Prove that ℓ^{∞} is not separable.

Problem 6. Prove that the real spaces ℓ_3^1 and ℓ_3^{∞} are not isometric.

Problem 7. Prove that the real spaces c_0 and c are not isometric.

Problem 8. Prove that if X is infinitely dimensional linear space, then there is a norm $\|\cdot\|$ in X such that $(X, \|\cdot\|)$ is not complete.

Problem 9. Let X, Y be normed spaces, dim $X = \infty$ and $Y \neq \{0\}$. Prove that there is a linear mapping $L: X \to Y$ which is unbounded.

Exercise 10. For a function $f: [-1,1] \to \mathbb{R}$ we define $T(f): [-1,1] \to \mathbb{R}$ by the formula $T(f)(t) = t^2 f(t)$, for $t \in [-1,1]$.

Consider T as a linear operator between the spaces X and Y in the following two cases

- (a) X = C([-1,1]) and $Y = L^1([-1,1])$.
- (b) $X = L^2([-1, 1])$ and $Y = L^1([-1, 1])$.

Prove that T is continuous and find its norm.

Problem 11. We know that if X is a Banach space and $T \in B(X)$, ||T|| < 1, then $I - T \in B(X)$ is an isomorphism, where I denotes the identity transformation. Show an example that this is not true without the assumption that X be a Banach space.