Analysis III: homework # 5

Due day: Lecture, Friday October 7, 2016

NAME (print):

Circle the problems that you have solved:

37 38 39 40 41 42 43 44 45

The solutions must be written in a **legible** form. The front page **must** be returned. All the papers **must** be stapled. **If any of the conditions is not satisfied, the homework will burned and flushed away.** The homework **will not** be returned so you better have a copy.

Problem 37. Given x, y in a complex inner product space, prove that

$$\langle x, y \rangle = \frac{1}{2\pi} \int_0^{2\pi} \|x + e^{it}y\|^2 e^{it} dt.$$

Problem 38. Let $\{x_n\}$ be an unbounded sequence in a Hilbert space H. Prove that $\{\langle x_n, x \rangle\}$ is unbounded for some $x \in H$.

Problem 39. Let $E \subset H$ be a non-empty, closed and convex subset of a Hilbert space H. As we know, for $x \in H$ there is a unique $P(x) \in E$ such that

$$||x - P(x)|| = \inf_{y \in E} ||x - y||.$$

Prove that

$$\|P(x)-P(y)\|\leq \|x-y\|\quad\text{for all }x,y\in H.$$

Problem 40. It is easy to see that $d(x,y) = \sqrt{|x-y|}$ is a metric on \mathbb{R} . Prove that the metric space (\mathbb{R},d) can be isometrically embedded into a Hilbert space.

Problem 41. Let $(X, \|\cdot\|)$ be a normed space of finite dimension n. Prove that there is a basis (x, \ldots, x_n) and functionals $x_1^*, \ldots, x_n^* \in X^*$ such that $\|x_i\| = 1$, $\|x_i^*\| = 1$ for $i = 1, 2, \ldots, n$ and

$$\langle x_i^*, x_j \rangle = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

Problem 42. Without using the Hahn-Banach theorem prove the following result:

Let $X \subset H$ be a closed subspace of a Hilbert space H and let $\ell \in X^*$ be a bounded linear functional on X. Then there is a unique $L \in H^*$ such that $||L||_{H^*} = ||\ell||_{X^*}$ and

$$\langle L, x \rangle = \langle \ell, x \rangle$$
 for all $x \in X$.

Problem 43. Let X be a normed space and let ℓ be a linear and discontinuous functional on X. Prove that $\ker \ell$ is a dense subset of X.

Problem 44. Show an example of $f \in L^1(\mathbb{R}^n) \setminus L^2(\mathbb{R}^n)$.

Problem 45. Prove that if $f \in C(\mathbb{R}^n) \setminus L^2(\mathbb{R}^n)$, then there is an orthonormal basis $\{\varphi_n\}_{n=1}^{\infty}$ of $L^2(\mathbb{R}^n)$ consisting of $C_0^{\infty}(\mathbb{R}^n)$ functions such that

$$\int_{\mathbb{R}^n} f(x)\varphi_n(x) dx = 0 \text{ for all } n = 1, 2, 3, \dots$$

Hint: Use f to define a discontinuous functional and use Problem 43.