Analysis III: homework # 7

Due day: Lecture, Friday November 18, 2016

NAME (print):

Circle the problems that you have solved:

58 59 60 61 62 63 64 65 66 67 68

Problem 58. Prove that for $0 , <math>L^p([0,1])$ is a complete metric space with respect to the metric

$$d(f,g) = \int_0^1 |f(t) - g(t)|^p dt$$

Prove that there are no nonzero continuous functionals on $L^p([0,1])$ when 0 .

Problem 59. Let Y be a subspace of a real Banach space X and let $\Lambda: Y \to \mathbb{R}^n$ be a bounded linear operator. Show that Λ can be extended to a bounded linear operator $\tilde{\Lambda}: X \to \mathbb{R}^n$ such that $\|\tilde{\Lambda}\| \leq \sqrt{n} \|\Lambda\|$.

Problem 60. Prove that there is a functional $0 \neq x^* \in (L^{\infty}(\mathbb{R}))^*$ such that $\langle x^*, f \rangle = 0$ for every bounded continuous function.

Problem 61. Let f be a bounded linear functional on a subspace M of a Hilbert space H. Prove that f has a unique norm-preserving extension to a bounded linear functional on H, and that this extension vanishes on M^{\perp} .

Exercise 62. Prove that every bounded functional on c_0 has unique norm-preserving extension to a functional on ℓ^{∞} .

Exercise 63. Let $G \subset \ell^1$ be a subspace consisting of sequences $(x_n)_{n=1}^{\infty}$ such that $x_1 = x_3 = x_5 = \ldots = 0$. Prove that every nonzero functional on G as infinitely many norm-preserving extensions to ℓ^1 .

Exercise 64. Prove that if $f: A \to \mathbb{R}$ is an L-Lipschitz function defined on a subset $A \subset X$ of a metric space, then there is an L-Lipschitz function $F: A \to \mathbb{R}$ such that F(x) = f(x) for all $x \in A$.

Problem 65. Let X and Y be Banach spaces. Let $D \subset B(X,Y)$ consists of operators that are one-to-one and have closed image. Prove that D is an open set.

Problem 66. If $1 , prove that the unit ball in <math>L^p(\mu)$ is *strictly convex*, i.e

$$||f||_p = ||g||_p = 1, f \neq g, \Rightarrow ||(f+g)/2||_p < 1.$$

Show that this fails in $L^1(\mu)$, $L^{\infty}(\mu)$ and C(X).

Problem 67. Fix $1 \leq p \leq \infty$. Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions in $L^p(\mathbb{R})$, converging weakly to a function $f \in L^p(\mathbb{R})$. Prove that

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx \quad \text{for all } a < b.$$

Problem 68. Prove that the sequence $f_n(x) = \frac{1}{n}\chi_{[0,n]}$ has no subsequence that is weakly convergent in $L^1(\mathbb{R})$.