NAME (print):

Circle the problems that you have solved:

## 1234567

The solutions must be written in a **legible** form. The front page **must** be returned. All the papers **must** be stapled. If any of the conditions will not be satisfied, the homework will be disregarded.

## Analysis 4: homework # 1

10 points for each problem.

**Problem 1.** Prove the Young's inequality: if  $1 \le p, q, r \le \infty$ ,  $q^{-1} = p^{-1} + r^{-1} - 1$ , then

$$||f * g||_q \le ||f||_p ||g||_r$$
.

**Problem 2.** Find  $\delta_1 * \delta_b$ , where  $\delta_a$  and  $\delta_b$  are Dirac measures concentrated at points  $a, b \in \mathbb{R}^n$ .

**Problem 3.** Prove that if f is locally integrable and  $\lim_{a\to\infty} \int_0^a f(x) dx = \ell$ , then  $A_{\varepsilon} = \int_0^{\infty} f(x) e^{-\varepsilon x} dx$  converges to  $\ell$  as  $\varepsilon \to 0^+$ .

**Problem 4.** Evaluate  $\int_0^\infty e^{-y^a} dy$ , a > 0. Provide the answer in terms of the  $\Gamma$  function.

**Problem 5.** The *beta function* is defined by the formula

$$B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx, \quad a,b > 0.$$

Prove that

(a) 
$$B(a,b)=2\int_0^{\pi/2}\sin^{2a-1}\theta\cos^{2b-1}\theta\,d\theta\,,$$
 (b) 
$$B(a,b)=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}\,.$$

**Problem 6.** Prove that

$$e^{-\beta} = \frac{2}{\pi} \int_0^\infty \frac{\cos \beta x}{1 + x^2} dx$$
, for  $\beta > 0$ .

**Problem 7.** Assume  $f \in L^1 \cap L^{\infty}$  and  $\hat{f} \geq 0$ . Prove that  $\hat{f} \in L^1$ .