For the first stochastic difference equation

$$
y_{t}=3+0.75 y_{t-1}-0.125 y_{t-2}+\varepsilon_{t}
$$

the particular solution for the deterministic process is

$$
\begin{aligned}
c & =3 /(1-.75+.125) \\
& =8
\end{aligned}
$$

To find the particular solution for the stochastic process, posit a linear challenge solution

$$
y_{t}=\sum_{i=0}^{\infty} \alpha_{i} \varepsilon_{t-i},
$$

and then substitute the challenge solution into the difference equation

$$
\alpha_{0} \varepsilon_{t}+\alpha_{1} \varepsilon_{t-1}+\alpha_{2} \varepsilon_{t-2}+\ldots=.75\left[\alpha_{0} \varepsilon_{t-1}+\alpha_{1} \varepsilon_{t-2}+\alpha_{2} \varepsilon_{t-3}+\ldots\right]-.125\left[\alpha_{0} \varepsilon_{t-2}+\alpha_{1} \varepsilon_{t-3}+\alpha_{2} \varepsilon_{t-4}+\ldots\right]+\varepsilon_{t}
$$

Collect like terms

$$
\left(\alpha_{0}-1\right) \varepsilon_{t}+\left(\alpha_{1}-.75 \alpha_{0}\right) \varepsilon_{t-1}+\left(\alpha_{2}-.75 \alpha_{1}+.125 \alpha_{0}\right) \varepsilon_{t-2}+\ldots=0
$$

Verify that there are coefficient values that make the challenge solution a solution for the difference equation.

$$
\begin{gathered}
\left(\alpha_{0}-1\right)=0 \\
\left(\alpha_{1}-.75 \alpha_{0}\right)=0 \\
\left(\alpha_{2}-.75 \alpha_{1}+.125 \alpha_{0}\right)=0 \\
\vdots
\end{gathered}
$$

Solving for α_{i}, we have $\alpha_{i}=.75 \alpha_{i-1}-.125 \alpha_{i-2}$. To reduce this further, we need to solve for the characteristic roots.

The homogeneous solutions will take the form $y_{t}^{h}=A \alpha^{t}$. Start by substituting for y_{t}

$$
A \alpha^{t}-.75 A \alpha^{t-1}+.125 A \alpha^{t-2}=0
$$

Divide by $A \alpha^{t-2}$

$$
\alpha^{2}-.75 \alpha+.125=0
$$

There are two solutions. We solve for α_{1} and α_{2} using the quadratic formula

$$
\alpha_{1}, \alpha_{2}=\frac{.75 \pm \sqrt{.5625-4(.125)}}{2}=.5, .25
$$

So, now we have

$$
y_{t}=A_{1}(.5)^{t}+A_{2}(.25)^{t}
$$

We can eliminate the arbitrary constants if we know the outcome in the initial periods y_{0} and y_{1}. This gives us two equations and two unknowns

$$
\begin{gathered}
y_{0}=8+A_{1}+A_{2} \\
y_{1}=8+A_{1}(.5)+A_{2}(.25)
\end{gathered}
$$

Solving gives us $A_{1}=4 y_{1}-y_{0}-24$ and $A_{2}=16-4 y_{1}+2 y_{0}$.
The particular solution for the stochastic process can be written compactly as

$$
\sum_{i=0}^{\infty}\left(2(.5)^{i}-(.25)^{i}\right) \varepsilon_{t-i}
$$

Putting it all together gives

$$
y_{t}=8+(.5)^{t}\left[4 y_{1}-y_{0}-24\right]+(.25)^{t}\left[2 y_{0}-4 y_{1}+16\right]+\sum_{i=0}^{\infty}\left(2(.5)^{i}-(.25)^{i}\right) \varepsilon_{t-i}
$$

If we assume the process starts in equilibrium (i.e., $y_{0}=y_{1}=8$), the solution simplifies to

$$
y_{t}=8+\sum_{i=0}^{\infty}\left(2(.5)^{i}-(.25)^{i}\right) \varepsilon_{t-i}
$$

