Time-Series Cross-Section Analysis

Enders, Chapter 1: Difference Equations

Jude C. Hays

February 3, 2021

Outline

(1) Difference Equations and Time Series Analysis
(2) Solving Difference Equations (First-Order)
(3) Solving Difference Equations (General)

Stochastic Difference Equations

"A difference equation expresses the value of a variable as a function of its own lagged values, time, and other variables... The reason for introducing...[these] equations is to make the point that time-series econometrics is concerned with the estimation of difference equations containing stochastic components" (Enders, p.3).

- $1^{\text {st }}, 2^{\text {nd }}$, and $n^{\text {th }}$ difference Δ, Δ^{2}, and Δ^{n}
- $1^{\text {st }}, 2^{\text {nd }}$, and $n^{\text {th }}$ order linear difference equations

$$
\begin{aligned}
& y_{t}=a_{0}+a_{1} y_{t-1}+x_{t} \\
& y_{t}=a_{0}+a_{1} y_{t-1}+a_{2} y_{t-2}+x_{t} \\
& y_{t}=a_{0}+\sum_{i=1}^{n} a_{i} y_{t-i}+x_{t}
\end{aligned}
$$

Theory Evaluation

Many economic theories generate model specifications in the form of difference equations

- The Random Walk Hypothesis
- Reduced-form and Structural Equations
- Error-Correction: Forward and Spot Prices
- Non-linear dynamics

Paper stones is an example of political theory that generates a model specification in the form of difference equations

Solving by Iteration

"A solution to a difference equation expresses the value of y_{t} as a function of the elements of the x_{t} sequence and $t \ldots$ and possibly initial conditions" (Enders, p.9).

$$
\begin{gathered}
y_{t}=a_{0}+a_{1} y_{t-1}+\varepsilon_{t} \\
y_{1}=a_{0}+a_{1} y_{0}+\varepsilon_{1} \\
y_{2}=a_{0}+a_{1}\left[a_{0}+a_{1} y_{0}+\varepsilon_{1}\right]+\varepsilon_{2} \\
y_{2}=a_{0}+a_{1} a_{0}+\left(a_{1}\right)^{2} y_{0}+a_{1} \varepsilon_{1}+\varepsilon_{2} \\
\vdots \\
y_{t}=a_{0} \sum_{i=0}^{t-1}\left(a_{1}\right)^{i}+\left(a_{1}\right)^{t} y_{0}+\sum_{i=0}^{t-1}\left(a_{1}\right)^{i} \varepsilon_{t-i}
\end{gathered}
$$

The Dynamics of First-Order Difference Equations

FIGURE 1.2 Convergent and Nonconvergent Sequences

Solving $n^{\text {th }}$ Order Difference Equations

The complete $n^{\text {th }}$ order difference equation is

$$
y_{t}=a_{0}+\sum_{i=1}^{n} a_{i} y_{t-i}+x_{t}
$$

The homogeneous portion of the $n^{\text {th }}$ order difference equation is

$$
y_{t}=\sum_{i=1}^{n} a_{i} y_{t-i}
$$

- A homogeneous solution to an $n^{\text {th }}$ order difference equation is a solution to the homogeneous portion of the difference equation. There should be n solutions.
- A particular solution is a solution to the original complete difference equation.
- A general solution to an $n^{\text {th }}$ order difference equation is a particular solution plus all homogeneous solutions.

The Solution Methodology

(1) Form the homogeneous equation and find all n homogeneous solutions;
(2) Find a particular solution;
(3) Obtain the general solution as the sum of the particular solution and a linear combination of all homogeneous solutions;
(9) Eliminate the arbitrary constant(s) by imposing the initial condition(s) on the general solution.

Solving Homogeneous Difference Equations

Ex. 1 (First-order): $y_{t}=.9 y_{t-1}$

- The homogeneous solution will take the form $y_{t}^{h}=A \alpha^{t}$
- The goal is to solve for A and α
- Substitute for y_{t}

$$
A \alpha^{t}-.9 A \alpha^{t-1}=0
$$

- Divide by $A \alpha^{t-1}$

$$
\alpha-.9=0
$$

- So, now we have

$$
y_{t}^{h}=A(.9)^{t}
$$

Solving Homogeneous Difference Equations

Ex. 1 (First-order): $y_{t}=.9 y_{t-1}$

- We can eliminate the arbitrary constant if we know the outcome in the initial period y_{0}

$$
y_{0}=A(.9)^{0}
$$

- If we set $y_{0}=1$, we have our final solution

$$
y_{t}^{h}=(.9)^{t}
$$

Stability Conditions for First-Order Solutions

If $|\alpha|<1$, then α^{t} converges to zero as t goes to infinity.
Convergence is direct if $0<\alpha<1$ and oscillatory if $-1<\alpha<0$.

Stability Conditions for First-Order Solutions

If $|\alpha|>1$, the solution is not stable. If $\alpha>1$, then α^{t} converges to infinity as t goes to infinity. If $\alpha<1$ and the solution oscillates explosively.

Solving Homogeneous Difference Equations

Ex. 2 (Second-order): $y_{t}=3+.9 y_{t-1}-.2 y_{t-2}$

- Again, the homogeneous solutions will take the form $y_{t}^{h}=A \alpha^{t}$
- The goal is to solve for A_{1}, A_{2}, α_{1}, and α_{2}
- Substitute for y_{t}

$$
A \alpha^{t}-.9 A \alpha^{t-1}+.2 A \alpha^{t-2}=0
$$

- Divide by $A \alpha^{t-2}$

$$
\alpha^{2}-.9 \alpha+.2=0
$$

- There are two solutions. We solve for α_{1} and α_{2} using the quadratic formula

$$
\alpha_{1}, \alpha_{2}=\frac{.9 \pm \sqrt{.81-4(.2)}}{2}=.5, .4
$$

Solving Homogeneous Difference Equations

Ex. 2 (Second-order): $y_{t}=3+.9 y_{t-1}-.2 y_{t-2}$

- So, now we have

$$
y_{t}=A_{1}(.5)^{t}+A_{2}(.4)^{t}
$$

- We can eliminate the arbitrary constants if we know the outcome in the initial periods y_{0} and y_{1}
- If we set $y_{0}=13$ and $y_{1}=11.3$, for instance, we two equations and two unknowns. To these equations, we need to add the particular (steady-state) solution $(c=3 /(1-.9+.2))$.

$$
\begin{gathered}
13=10+A_{1}+A_{2} \\
11.3=10+A_{1}(.5)+A_{2}(.4)
\end{gathered}
$$

Solving Homogeneous Difference Equations

Ex. 2 (Second-order): $y_{t}=3+.9 y_{t-1}-.2 y_{t-2}$

- Solving gives us $A_{1}=1$ and $A_{2}=2$, and our final solution is

$$
y_{t}=(.5)^{t}+2(.4)^{t}
$$

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \alpha=\frac{-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{2}}}{2}
\end{aligned}
$$

Stability Conditions for Second-Order Solutions

stability requires as all characteristic roots lie within the unit circle (Enders, p. 29).

FIGURE 1.6 Characteristic Roots and the Unit Circle

Stability Conditions for Higher-Order Systems

Higher-Order Systems: $y_{t}-\sum_{i=1}^{n} a_{i} y_{t-i}=0$
Oftentimes, we do not need to solve for the characteristic roots of higher-order systems.
(1) A necessary condition for stability is $\sum_{i=1}^{n} a_{i}<1$
(2) A sufficient condition for stability is $\sum_{i=1}^{n}\left|a_{i}\right|<1$
(3) The process contains a unit root if $\sum_{i=1}^{n} a_{i}=1$

Particular Solutions for Deterministic Processes

If $\mathbf{x}_{\mathbf{t}}=\mathbf{0}$, the difference equation becomes

$$
y_{t}=a_{0}+a_{1} y_{t-1}+a_{2} y_{t-2}+\ldots+a_{n} y_{t-n}
$$

which is solved when $\Delta y_{t}=0$ or $y_{t}=y_{t-1}=y_{t-2}=y_{t-n}=c$.

- Substituting for y_{t} gives

$$
c=a_{0}+a_{1} c+a_{2} c+\ldots+a_{n} c
$$

- Solving for c gives

$$
c=a_{0} /\left(1-a_{1}-a_{2}-\ldots-a_{n}\right)
$$

- Thus, a particular solution is

$$
y_{t}=a_{0} /\left(1-a_{1}-a_{2}-\ldots-a_{n}\right)
$$

Particular Solutions for Stochastic Processes

The Method of Undetermined Coefficients
(1) Since linear equations have linear solutions, we know the form of the solution.
(2) Posit a linear challenge solution that includes all the terms thought to appear in the solution.
(3) Solve for the undetermined coefficients.

The Method of Undetermined Coefficients

Ex. 3 (First-Order): $y_{t}=3+.9 y_{t-1}+\varepsilon_{t}$

- Posit a linear challenge solution for the stochastic portion of the particular solution

$$
y_{t}=\sum_{i=0}^{\infty} \alpha_{i} \varepsilon_{t-i}
$$

- Substitute the challenge solution into the difference equation

$$
\alpha_{0} \varepsilon_{t}+\alpha_{1} \varepsilon_{t-1}+\alpha_{2} \varepsilon_{t-2}+\ldots=.9\left[\alpha_{0} \varepsilon_{t-1}+\alpha_{1} \varepsilon_{t-2}+\alpha_{2} \varepsilon_{t-3}+\ldots\right]+\varepsilon_{t}
$$

The Method of Undetermined Coefficients

Ex. 3 (First-Order): $y_{t}=3+.9 y_{t-1}+\varepsilon_{t}$

- Collect like terms

$$
\left(\alpha_{0}-1\right) \varepsilon_{t}+\left(\alpha_{1}-.9 \alpha_{0}\right) \varepsilon_{t-1}+\left(\alpha_{2}-.9 \alpha_{1}\right) \varepsilon_{t-2}+\ldots=0
$$

- Verify that there are coefficient values that make the challenge solution a solution for the difference equation.

$$
\begin{gathered}
\left(\alpha_{0}-1\right)=0 \\
\left(\alpha_{1}-.9 \alpha_{0}\right)=0 \\
\left(\alpha_{2}-.9 \alpha_{1}\right)=0
\end{gathered}
$$

- Solving for α_{i}, we have $\alpha_{i}=(.9)^{i}$

Putting it all together

Ex. 3 (First-Order): $y_{t}=3+.9 y_{t-1}+\varepsilon_{t}$

- This gives the general solution

$$
y_{t}=30+A(.9)^{t}+\sum_{i=0}^{\infty}(.9)^{i} \varepsilon_{t-i}
$$

- We can eliminate the arbitrary constant if we have an initial value for y_{0}.

$$
y_{0}=30+A+\sum_{i=0}^{\infty}(.9)^{i} \varepsilon_{-i}
$$

Putting it all together

Ex. 3 (First-Order): $y_{t}=3+.9 y_{t-1}+\varepsilon_{t}$

- Substituting A into the general solution gives

$$
y_{t}=30+\left[y_{0}-30-\sum_{i=0}^{\infty}(.9)^{i} \varepsilon_{-i}\right](.9)^{t}+\sum_{i=0}^{\infty}(.9)^{i} \varepsilon_{t-i}
$$

- Collecting like terms, we have

$$
y_{t}=30+(.9)^{t}\left[y_{0}-30\right]+\sum_{i=0}^{\infty}(.9)^{i} \varepsilon_{t-i}-(.9)^{t} \sum_{i=0}^{\infty}(.9)^{i} \varepsilon_{-i}
$$

Putting it all together

Ex. 3 (First-Order): $y_{t}=3+.9 y_{t-1}+\varepsilon_{t}$

- The stochastic portion of this solution can be simplified. To see this, write out the case for $t=1$.

$$
\varepsilon_{1}+(.9) \varepsilon_{0}+(.9)^{2} \varepsilon_{-1}+\ldots-(.9)\left[\varepsilon_{0}+(.9) \varepsilon_{-1}+\ldots\right]
$$

- Thus, we have

$$
y_{t}=30+(.9)^{t}\left[y_{0}-30\right]+\sum_{i=0}^{t-1}(.9)^{i} \varepsilon_{t-i}
$$

Lag Operators and their Properties

$$
L^{i} y_{t} \equiv y_{t-i}
$$

(1) The lag of a constant is a constant: $L c=c$.
(2) The distributive law holds:

$$
\left(L^{i}+L^{j}\right) y_{t}=L^{i} y_{t}+L^{j} y_{t}=y_{t-i}+y_{t-j} .
$$

(3) The associative law holds:
$L^{i} L^{j} y_{t}=L^{i}\left(L^{j} y_{t}\right)=L^{i} y_{t-j}=y_{t-i-j}$.
(9) L raised to a negative number is the lead operator: $L^{-i} y_{t}=y_{t+i}$.
(6) For $|a|<1$ the infinite sum $\left(1+a L+a^{2} L^{2}+a^{3} L^{3}+\ldots\right) y_{t}$ converges to $y_{t} /(1-a L)$.

Lag Operators and their Properties

$$
L^{i} y_{t} \equiv y_{t-i}
$$

- Lag Operators allow us to write high-order difference equations,

$$
\begin{aligned}
\left(1-a_{1} L-a_{2} L^{2}+\ldots a_{p} L^{p}\right) y_{t} & =a_{0}+\left(1+b_{1} L-b_{2} L^{2}+\ldots b_{q} L^{q}\right) \varepsilon_{t} \\
A(L) y_{t} & =a_{0}+B(L) \varepsilon_{t}
\end{aligned}
$$

as well as their particular solutions, compactly:

$$
y_{t}=a_{0} / A(L)+B(L) \varepsilon_{t} / A(L)
$$

