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Lag Operators

Oftentimes it is much more convenient to write difference
equations using the lag operator L, which is defined as a linear
operator such that

Liyt ≡ yt−i

Lag operators allow us to write compactly the difference
equation yt = a0 + a1yt−1 + ...+ apyt−p + εt as

(1− a1L− a2L
2 − ...− apL

p)yt = a0 + εt

or simply
A(L)yt = a0 + εt
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Lag Operators

And, importantly for our purposes today, we can express the
equation
yt = a0 + a1yt−1 + ...+ apyt−p + εt + β1εt−1 + ...+ βqεt−q as

A(L)yt = a0 + B(L)εt

This representation has the compact particular solution

yt = a0/A(L) + B(L)εt/A(L)

If we do not need to know the values of the coefficients in the
particular solution, you will likely see the lag operator notation
used to write out time series models.

Jude C. Hays Time Series Analysis



Lag Operators
ARMA Models

Box-Jenkins Model Selection

White Noise Process

The autoregressive moving-average (ARMA) model underlies much
of time-series analysis. The methods for estimating these models
were developed in Box and Jenkins (1976).

We begin with white noise processes, which are a critical
component of ARMA models.

We use the notation {εt} to represent the entire sequence
{ε0, ε1, ε2, ..., εt}
The sequence {εt} is a white noise process if

E (εt) = E (εt−1) = ... = 0

E (ε2t ) = E (ε2t−1) = ... = σ2

E (εt , εt−s) = E (εt−j , εt−j−s) = ...0 for all j and s
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ARMA (p,q) Models

Next, consider a pth order difference equation

yt = a0 +

p∑
i=1

aiyt−i + xt

Let xt take the following form

xt =

q∑
i=0

βiεt−i

We call this a qth order moving average process.

Note that while {εt} is a white noise process, {xt} is not.
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Covariance-stationary Processes

If yt is a linear stochastic difference equation, the stability
condition is a necessary condition for the time-series {yt} to be
stationary.

A stochastic process with finite mean and variance is
covariance-stationary if for all t, s, and j

E (yt) = E (εt−s) = µ

E [(yt − µ)2] = E [(yt−s − µ)2] = ... = σ2
y

E [(yt − µ), (yt−s − µ)] = E [(yt−j − µ), (yt−j−s − µ)] = γs

In words, this implies that the mean and autocovariances of
the time series do not depend on time.
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Covariance-stationary Processes

In order for a time series to be stationary...

The homogeneous solution must be zero.

The characteristic roots must lie within the unit circle.

As for the stochastic part of the particular solution, which will take

the form xt =
∞∑
i=0

βiεt−i

The mean of {xt} must be finite and time-independent, which
it is given that {εt} is a white noise process.

The variance of {xt} must be finite and time-independent,
which it as long as

∑
(βi )

2 is finite.

The covariances of {xt} must be finite and time-independent,
which they are as long as σ2(βs + β1βs+1 + β2βs+2 + ...) is
finite.
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Identification, Estimation, Diagnostics

1 Compare sample autocorrelation and partial autocorrelation
functions with theoretical ARMA processes.

2 Choose a parsimonious specification with coefficient estimates
that imply a covariance-stationary process.

3 Check model fit using AIC/SBC.

4 Check the residual to make sure they are “white noise.”

5 Check out of sample forecasts and coefficient stability.
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The ACF and PACF

The autocorrelation between yt and yt − s is defined as
ρs ≡ γs

γ0
.

The partial autocorrelation between yt and yt − s (ϕss)
eliminates the effects of the intervening values of yt − 1 and
yt − s + 1.
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The ACF and PACF

AR(1) Example: yt = a0 + a1yt−1 + εt

γs = E [(yt − µ)(yt−s − µ)]
= E [(εt + a1εt−1 + (a1)

2εt−2 + ...)(εt−s + a1εt−s−1 + ...)]
= σ2(a1)

s [1 + (a1)
2 + (a1)

4 + ...]
= σ2(a1)

s/[1− (a1)
2]

y∗t =
s−1∑
j=1

ϕsjy
∗
t−j + ϕssy

∗
t−s + et
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Theoretical ACF and PACF Patterns
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Theoretical ACF and PACF Properties

Jude C. Hays Time Series Analysis



Lag Operators
ARMA Models

Box-Jenkins Model Selection

The AIC and SBC

The Akaike Information Criterion (AIC) and Schwartz
Bayesian Criterion (SBC) are measures of model fit that can
be used to compare non-nested models (e.g., AR(1) and
MA(3)).

AIC = T ln(sum of squared residuals) + 2n

SBC = T ln(sum of squared residuals) + n ln(T )

Smaller numbers are better! As the model fit improves the
AIC and SBC → −∞.
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The AIC and SBC

The SBC has superior large-sample properties. Both the AIC
and SBC will select higher order models than the true
data-generating process (DGP), but the SBC is asymptotically
consistent, while the AIC is biased in favor of
over-parameterized models.

However, the AIC can perform better than SBC in small
samples.

Hopefully, both measures select the same model specification.

If not, check the residuals, out-of-sample forecasting
performance, and parameter stability. (You should do this
regardless.)
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Checking Residuals

If the residuals are normal, independent and identically
distributed. Only 5% of the standardized residuals (εt/σ)
should lie outside of the -2 to +2 band.

Check the ACF and PACF for the residuals.

Calculate the Ljung-Box statistic.

Q = T (T + 2)
s∑

k=1

r2k /(T − k)

This statistic tests the null hypothesis that the residuals were
generated by a white-noise process. Under the null hypothesis,
it is distributed χ2 with s − p − q − 1 degrees of freedom.
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Out-of-Sample Forecasting Performance

To assess the forecasting performance of a model, we evaluate
its out-of-sample forecast errors.

eT (1) = yT+1 − ET (yT+1)

If our model is an ARMA(2,1), the forecast error is

eT (1) = yT+1 − (â0 + â1yT + â2yT−1 + β̂1ε̂T )

We can compare the forecasting performance in terms of both
bias and efficiency.
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Out-of-Sample Forecasting Performance

A useful comparison is the mean squared prediction error,
which combines forecasting bias and efficiency performance.

MSPE =
1

H

H∑
j=1

e2ij

where H is the number of one-step-ahead forecasts generated
with model i .

The Granger-Newbold and Diebold-Mariano tests statistically
evaluate the null hypothesis of equal forecast accuracy. The
former assumes a quadratic loss function (MSPE), while the
latter allows the loss function to be general.
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Parameter Stability

Structural breaks in the DGP can lead to wildly inaccurate
parameter estimates.

The true DGP for the figure above is
yt = 1 + 0.5yt−1 + εt , for t < 100 and
yt = 2.5 + 0.65yt−1 + εt , fort ≥ 100.
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Parameter Stability

Estimating an AR(1) model using the entire sample gives

yt = 0.44 + 0.88yt−1

Structural break in constant is mistaken for persistence.

We typically look for structural breaks by estimating our
models recursively and evaluating the evolution of the
parameter estimates and forecasting accuracy of the model
over time.
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