Time Series Analysis Intervention Analysis, Transfer Functions, and Time Series Regression

Jude C. Hays

September 11, 2024

Outline

Intervention Analysis

- Intervention models allow analysts to test for a (permanent or temporary) change in the mean of a time series at the point when an intervention occurs.
- An intervention is an event (singular or sustained) that is theorized to have an impact on the time series we are modeling.
- **•** If we are modeling skyjackings, an intervention might be the use of metal detectors in airport security.
- If we are modeling unemployment rates, an intervention might be a switch from a right to left-wing government (or the presence of a left-wing government).
- If we are modeling President Bush's approval ratings, an intervention might be the 9/11 terrorist attacks.

Intervention Analysis

• The $ARMA(p,q)$ version of the model is

$$
y_t = a_0 + A(L)y_{t-1} + C(L)I_{t-d} + B(L)\varepsilon_t
$$

where
$$
A(L) = (a_1L + a_2L^2 + ... + a_pL^p)
$$
,
\n $B(L) = (1 + \beta_1L + \beta_2L^2 + ... + \beta_qL^q)$, and
\n $C(L) = (c_d + c_{d+1}L + c_{d+2}L^2 + ... + c_{d+h}L^{d+h})$.

• Consider a simple example. If $p = 1$, $q = 0$, $d = 0$ and $h = 0$, then we have

$$
y_t = a_0 + a_1 y_{t-1} + c_0 I_t + \varepsilon_t, |a_1| < 1
$$

Without an initial condition, the solution to this model is

$$
y_t = a_0/(1 - a_1) + c_0 \sum_{i=0}^{\infty} a'_1 l_{t-i} + \sum_{i=0}^{\infty} a'_1 \varepsilon_{t-i}
$$

Types of Intervention Functions

Interventions can take several forms.

• The step (pure jump) and pulse functions are the most commonly used.

Types of Intervention Functions

- In the case of a step function, which represents a sustained intervention, the indicator variable I_t takes a value of zero prior to the intervention and one at the time of the intervention and afterwards.
- In the case of a pulse function, which represents a singular event, the indicator variable I_t takes a value of zero in all periods except the one in which the intervention occurs.
- Ultimately, we are interested in the effect of the intervention over time. With our simple, AR(1), intervention model, the impulse response function for a sustained intervention is

$$
dy_{t+j}\Big/dI_t=c_0\left[1+a_1+...+(a_1)^j\right]
$$

The impulse response function for a pulse is

$$
dy_{t+j}\Big/dI_t=c_0(a_1)^j
$$

Impulse Response Functions

IRF: Sustained Intervention, $a_1 = .75$ & $c_0 = 1$.

IRF: Pulse Intervention, $a_1 = .75$ & $c_0 = 1$.

Estimating Intervention Models

- **1** Use the longest data span, either the pre or post-intervention period, to identify a set of plausible ARMA models.
- ² Estimate the set of models over the entire sample including the intervention.
- ³ Perform diagnostics on the estimated models.

Selecting an Intervention Model

- **1** The coefficient estimates should be statistically significant and imply a convergent process.
- **2** The residuals should be white noise
- **3** The model should outperform the alternatives in terms of fit and forecasting.

Transfer Function Models

- The transfer function model is a generalization of the intervention model.
- We replace the deterministic dummy variable $\{I_t\}$ with $\{z_t\}$, which can take other forms such as white-noise and ARMA processes.
- The ARMA(p,q) version of the transfer function model is

$$
y_t = a_0 + A(L)y_{t-1} + C(L)z_{t-d} + B(L)\varepsilon_t
$$

Identifying Transfer Function Models

- If $\{z_t\}$ is a white-noise process, we rely on the cross-correlations between $\{y_t\}$ and $\{z_{t-i}\}\$ to identify the model.
- This cross-correlation is defined as

.

$$
\rho_{yz}(i) \equiv \text{cov}(y_t z_{t-i})/(\sigma_y \sigma_z)
$$

• The standardized cross-covariance is defined as

$$
\gamma_{yz}(i) \equiv \mathrm{cov}(y_t z_{t-i})/(\sigma_z^2)
$$

• Plotting the cross-correlations and standardized cross-covariances give the cross-correlation function (CCF) and standardized cross-covariance function (CCVF) respectively.

Identifying Transfer Function Models

The theoretical CCF and CCVF have the following characteristics

- **1** All the $\rho_{vz}(i)$ and $\gamma_{vz}(i)$ will be zero until the first nonzero element of the polynomial $C(L)$.
- \bullet The form of $B(L)$ does not affect the theoretical CCF and CCVF.
- **3** Spikes in the CCF and CCVF indicate a nonzero element of $C(L)$. A spike at lag d indicates that z_{t-d} directly affects y_t .
- **4** The nature in which spikes decay reveals information about $A(L)$. We read these patterns in the same way we read the ACF for an ARMA model.

Identifying Transfer Function Models

Some examples of theoretical CCVFs

Identifying Models with Higher-Order Input Processes

- **•** If $\{z_t\}$ is an ARMA(p,q), we have $D(L)z_t = E(L)\varepsilon_{zt}$
- Substituting into $y_t = a_0 + A(L)y_{t-1} + C(L)z_{t-d} + B(L)\varepsilon_t$ allows us to trace the effects of a one-unit shock to ε_{zt} on y_t .
- We start by estimating the parameters of the polynomials $D(L)$ and $E(L)$.
- We use the cross-correlations between $\{v_t\}$ filtered by $D(L)/E(L)$ and $\hat{\varepsilon}_{zt}$ to identify the forms of $A(L)$ and $C(L)$.
- Estimate $[1 A(L)L]$ y $_t = C(L)z_t + e_t$, and then use e_t to find the best model for $B(L)\varepsilon_t$
- Estimate $A(L)$, $B(L)$ and $C(L)$ simultaneously.

The Autoregressive Distributed Lag Model

We can think of time series regression as an alternative to the ARIMA approach.

- There are a number of models that we lump together under the category of time series regressions.
- The most general of these models is the autoregressive distributed lag (ADL) model

$$
y_t = \alpha_0 + \sum_{i=1}^p \alpha_i y_{t-i} + \sum_{j=1}^n \sum_{i=0}^q \beta_{ji} x_{jt-i} + \varepsilon_t
$$

• Consider the simple case where $p = q = n = 1$

$$
y_t = \alpha_0 + \alpha_1 y_{t-1} + \beta_0 x_t + \beta_1 x_{t-1} + \varepsilon_t
$$

Restricted Versions of the ADL Model

- The other common time series regression models are restricted version of the ADL.
- Among these models are

Partial Adjustment Model: $y_t = \alpha_0 + \alpha_1 y_{t-1} + \beta_0 x_t + \varepsilon_t$

Finite Distributed Lag Model: $y_t = \alpha_0 + \beta_0 x_t + \beta_1 y_{t-1} + \varepsilon_t$

$$
Static Model: y_t = \alpha_0 + \beta_0 x_t + \varepsilon_t
$$

Common Factor Model:

$$
y_t = \beta_0 x_t + u_t, u_t = \alpha_0 + \alpha_1 u_{t-1} + \varepsilon_t, \alpha_1 = -\beta_1/\beta_0
$$

Doing Time Series Regression the Right Way

- Estimate the general model (i.e., the ADL or ECM) and test restrictions.
- Calculate all the dynamic quantities of interest (short-run effects, long-run effects, mean-lag length, median-lag length).
- Note that all of these quantities are contained in the *impulse* response function.