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Spatiotemporal Multivariate Qualitative Models

Important questions: (observed) recursive? (latent) simultaneous?
mixed process?

A general form for a pair of binary outcomes (here as probit) is
given as:

y∗1 = β0 + β1x1 + β2y2 + β3y
∗
2 + u

y∗2 = γ0 + γ1x1 + γ2y1 + γ3y
∗
1 + v, where (u, v) ∼ N (0,Σ)

This nests several models:

1 If β2 = γ2 = β3 = γ3 = 0 and ρuv = 0 ind. probits

2 If γ2 or β2 = β3 = γ3 = 0 and ρuv = 0 ind. probits (recursive)

3 If γ2 or β2 = β3 = γ3 = 0 and ρuv 6= 0 bi-probit

4 If β3 6= 0 and γ3 6= 0 simultaneous equation model
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Spatiotemporal Multivariate Qualitative Models

When both latent and realized qualitative outcome are in the
model, additional restrictions may be needed for logical
consistency.

Consider

y∗ = β1x+ β2y + u,

is logically inconsistent unless β2 = 0. To see, when y = 1 we have
β1x+ β2 < u and when y = 0 then β1x ≥ u, where the
probabilities only sum to 1 when β = 0.

More general than it might seem, consider

y1 = β1y2 + β2x1 + u

y∗2 = γ1y1 + γ2x2 + v = γ1β1y2 + γ1β2x1 + γ2x2 + γ1u+ v

Only (logically) consistent if γ1β1 = 0
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Spatiotemporal Multivariate Qualitative Models

If, however, restrictions are made to ensure that the model is
recursive:

y∗1 = β0 + β1x1 + β2y2 + u

y∗2 = γ0 + γ1x1 + v, where (u, v) ∼ N (0,Σ),

then estimation proceeds without issue any additional fixes.



Spatiotemporal Multivariate Qualitative Models

Thus, for simplicity, let’s assume β2 = 0 and just focus on the
correlated errors. To estimate such a model we need to denote a
joint distribution of (u, v) – say F (·, ·) – and we can define joint
probabilities for the outcome profiles:

P11 = Pr(y1 = 1, y2 = 1) = F [(β1x1, β2x2); ρ]

P10 = Pr(y1 = 1, y2 = 0) = F [(β1x1,−β2x2); ρ]

P01 = Pr(y1 = 0, y2 = 1) = F [(−β1x1, β2x2); ρ]

P00 = Pr(y1 = 0, y2 = 0) = F [(−β1x1,−β2x2); ρ]

Which we could specify a likelihood function for as:

L(β1, β2) =
∏

P y1y211 P
y1(1−y2)
11 P

(1−y1)y2
11 P

(1−y1)(1−y2)
11



Spatiotemporal Multivariate Qualitative Models

To back up for a second, maximizing the likelihood from the last
slide involves the evaluation of double integrals (the bivariate
normal CDF). For example

P00 =

∫ −β1x1
−∞

∫ −β2x2
−∞

φ((u, v)′; Σ)dudv = Φ(−β1x1,−β2x2; ρ),

or

P11 =

∫ ∞
−β1x1

∫ ∞
−β2x2

φ((u, v)′; Σ)dudv = Φ(β1x1, β2x2; ρ),

Can generalize using qj = 2yij − 1

` =
∑

log Φ(qjβ1x1, qjβ2x2; q1q2ρ),



Space-Time Dependence via Latents

This represents a “pure” strategy to model autoregressive
dependence in space and time (Franseze, Hays, Cook 2016).
However. . .

In terms of specification multivariate models just extend the
number of equations, but for estimation this becomes a
“ferocious maximization problem”

Therefore we discuss some simple strategies (Beck, Katz, Tucker
1998; Carter and Signorino 2010)
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On time: BTSCS is duration data

Underlying data structure:

t 1 2 3 4 5 6 7

y 0 0 1 1 1 1 0

Looks familiar?

If interested in the pr(y = 1) then logit, probit, etc.

If interested in the length (of the spell) of 0’s or 1’s then
survival/event history analysis

Therefore we can use strategies from duration models to account
for time dependence in repeated-measure binary outcome data
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Discrete-Time Hazard Models

Discrete-time hazard models are used when the time to an
event is either inherently discrete or group into discrete
intervals of time (“interval censoring”).

With interval censoring, we model the probability that an
event occurs within a particular interval with logit or probit
models.

The baseline hazard (i.e., the hazard function when all
covariates are set to zero) can be modeled using either
time-period dummies, splines, or polynomials.

Polynomials in time are the easiest method to implement and
interpret.

Time-period dummies are the most flexible, but they eat up degrees of
freedom and commonly suffer from separation problems.
Splines are more difficult to implement correctly and rarely interpreted.

Typically a cubic polynomial in time is sufficient to capture
the baseline hazard.



Underlying maths: failure distribution

Define the CDF as

F (t) =

∫ t

0
f(u)d(u) = pr(T ≤ t),

which is the probability that survival time T is less than or equal to
t (sometimes called the failure distribution).

The PDF is

f(t) = lim
∆t→0

F (t+ ∆t)− F (t)

∆t
=

pr(t ≤ T ≤ (t+ ∆t))

∆t
,

which is the conditional (or instantaneous) failure rate, that is, the
probability that failure (an event) occurs within an infinitesimally
small time.
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Underlying maths: survivor function

The complement to the failure distribution is the, wait for it,
survivor function:

S(t) = 1− F (t) = pr(T ≥ t),
which gives us the – strictly non-increasing – proportion of
survivors at time t
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Underlying maths: hazard rate

Now we have the parts necessary to define the risk of failure, that
is, the hazard rate

h(t) =
f(t)

S(t)
=

pr(t ≤ T ≤ (t+ ∆t)|T ≤ t)
∆t

which is the conditional failure rate – e.g., Given that the US has
been a democracy since 1776, what are the chances it will
transition to autocracy in 2017?
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Discrete-Time Hazard Models

The baseline hazard (i.e., the hazard function when all
covariates are set to zero) can be modeled using either
time-period dummies, splines, or polynomials.

Polynomials in time are the easiest method to implement and
interpret.

time-since-event counter, time-since-event counter2,
time-since-event counter3

Typically a cubic polynomial in time is sufficient to capture
the baseline hazard.



Regime (State) Switching Models

When regimes (or states) are observed and persist over time,
it is relatively straightforward to estimate a switching model.

In the two-regime case, we use logit or probit to model the
probability of transitioning from one regime to the the other,
or more generally Pr(St = 1|St−1, Xt−1).

On the right-hand side, the regression includes the regime at
time t− 1, covariates, and covariates interacted with the
regime at time t− 1, for example, in the simplest case

y∗t = β0 + β1St−1 + β2xt−1 + β3St−1×xt−1,

where y∗t is a latent variable that determines the probability
of observing a one at time t.



Regime (State) Switching Models

y∗t = β0 + β1St−1 + β2xt−1 + β3St−1×xt−1,

In the case of logit,

The probability of persisting in the regime coded zero P00 is

1− 1

1 + exp−(β0+β2xt−1)
.

The probability of switching to the regime coded one is
1− P00.

The probability of persisting in the regime coded one P11 is

1

1 + exp−([β0+β1]+[β2+β3]xt−1)
.

The probability of switching to the regime coded zero is
1− P11.



On space: Spatial Filtering

However, similar evasions are not available with spatial
dependence. . .

But! Spatial filtering is extremely flexible and can be used here as
well. Much better alternative than using the spatially lagged
observed value.
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On heterogeneity: RE vs. FE

Many of the same considerations as with interval-valued outcomes
(i.e., heterogeneity in the intercepts, orthogonality of the unit
effects and the predictors, distribution of the unit effects, etc. . . ).

Some additional complications with fixed effects however:

Cannot demean the data for fixed effects (therefore, incidental
parameters problem)

Unconditional vs. Conditional

Sample Censoring
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On heterogeneity: PML-FE

Consequence of sample censoring:

Pr(Y = 1)︸ ︷︷ ︸
Population

Relationship

= Pr(Y = 1|Z = 1)︸ ︷︷ ︸
Uncensored
Relationship

Pr(Z = 1)︸ ︷︷ ︸
Probability
Uncensored

+ Pr(Y = 1|Z = 0)︸ ︷︷ ︸
Censored

Relationship

(1−Pr(Z = 1))

AME =
1

n

n∑
i=1

̂Pr(Y = 1|xi, β̂, α̂i)× (1− ̂Pr(Y = 1|xi, β̂, α̂i))× β̂



On heterogeneity: PML-FE

Penalized Maximum Likelihood due to Firth (1993)

L∗(θ) = L(θ)|I(θ)|
1
2 .

Shown to be a solution for separation (Heinze and Schempher
2001)

Sample censoring induced from unconditional fixed effects is
separation

Therefore you can using PML to estimate a fixed effects model
with binary outcomes (Cook, Hays, Franzese 2018)



In Sum

So often our recommendation for a ‘simple’ model with
binary-TSCS data would be a PML-FE model with cubic
polynomials and spatial filtering.


