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Introduction to VAR Models

Box-Jenkins intervention models can be used to analyze the
effect of a deterministic event (or treatment) on the mean of
a time series yt at the point when the intervention occurs.

Transfer function models allow us to analyze the effect of a
stochastic intervention zt on yt , assuming there is no
feedback from yt to zt .

Vector autoregression (VAR) models can be used to analyze
the properties of a system of equations in which all the
variables are jointly endogenous.
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Introduction to VAR Models

A VAR is an n-equation, n-variable (linear) model in which each

variable is explained by its own lagged values and lagged values of

the remaining n-1 variables.

Sims (1980) developed the VAR model to address problems with

structural equation models, which require many assumptions for

identification.

”Because existing large models contain too many incredible restrictions,

empirical research aimed at testing competing macroeconomic theories

too often proceeds in a single- or few-equation framework. For this

reason alone, it appears worthwhile to investigate the possibility of

building large models in a style which does not tend to accumulate

restrictions so haphazardly...It should be feasible to estimate large-scale

macromodels as unrestricted reduced forms, treating all variables as

endogenous” (Sims 1980, emphasis added).
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Structural and Standard (Reduced) Forms

As with an AR process, the order of the VAR (p) determines
the number of lags included for each variable.
Thus, each equation in a VAR contains np + 1 parameters and
the systems as a whole has n2p + n parameters.
In the simple two-variable case, the structural version of the
first-order VAR model is

yt = b10 − b12zt + γ11yt−1 + γ12zt−1 + εyt
zt = b20 − b21yt + γ21yt−1 + γ22zt−1 + εzt

where yt and zt are assumed stationary and εyt and εzt , the

structural disturbances, are uncorrelated white-noise disturbances

with standard deviations σy and σz respectively.
Note that we can rewrite this system as[

1 b12
b21 1

] [
yt
zt

]
=

[
b10
b20

]
+

[
γ11 γ12
γ21 γ22

] [
yt−1
zt−1

]
+

[
εyt
εzt

]
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Structural and Standard (Reduced) Forms

Or, more compactly, using matrix notation, as

Bxt = Γ0 + Γ1xt−1 + εt

Premultiplying both sides by B−1 gives the VAR in its
standard or reduced form

xt = A0 + A1xt−1 + et

where A0 = B−1Γ0, A1 = B−1Γ1 and et = B−1εt.

Given B−1 =

[
1/1− b12b21 −b12/1− b12b21
−b21/1− b12b21 1/1− b12b21

]
, the

reduced-form disturbances are

e1t = (εyt − b12εzt)/(1− b12b21)
e2t = (εzt − b21εyt)/(1− b12b21)
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Reduced-form Disturbances

Given our assumption that the structural disturbances,εyt and
εzt , are white noise, the reduced-form disturbances,e1t and
e2t , have zero means, constant variances, and are individually
serially uncorrelated.

Unlike the structural disturbances, however, the reduced-form
disturbances will be correlated

Ee1te2t = −(b21σ
2
y + b12σ

2
z )
/

(1− b12b21)
2

if either b12 or b21 is nonzero.

We will refer to the variance-covariance matrix of the
reduced-form disturbances as

Σ =

[
var(e1t) cov(e1t , e2t)

cov(e1t , e2t) var(e2t)

]
=

[
σ21 σ12
σ21 σ22

]
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Identifying Structural VAR Models

Note that the structural version of the VAR cannot be
estimated because of the contemporaneous (zero-order)
relationships between yt and zt , which imply cov(yt , εzt) 6= 0
and cov(zt , εyt) 6= 0.

The parameters of the structural model are not identified, but
the parameters of the reduced-form model are.

We can, however, identify the parameters of the structural
model, if we are willing to make some restrictions.

To understand how we can gain identification by imposing
restrictions, think about the parameters we can estimate from
the reduced-form first-order VAR model. There are nine: six
coefficients (a10, a20, a11, a12, a21 and a22) and the three
elements of the variance-covariance matrix for the
reduced-form residuals (var(e1t), var(e2t) and cov(e1t , e2t)).
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Identifying Structural VAR Models

The structural version of the VAR has ten parameters: eight
coefficients (b10, b20, b12, b21, γ11, γ12, γ21 and γ22) and two
unknown elements of the variance-covariance matrix for the
structural disturbances (σ2y and σ2z ).

Hence, we need one restriction, leaving nine unknown
parameters of the structural model. In this case, with the
reduced-form parameter estimates, we have nine quantities
that we can plug into nine equations to solve for the nine
unknown parameters of the structural model.

One very common approach is to impose zero-order
restrictions that makes the system of equations recursive.

For example, if we restrict b21 to be zero, then zt has a
contemporaneous effect on yt , but yt affects zt with a
one-period lag.
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Identifying Structural VAR Models

Again, it is the contemporaneous relationships in the B matrix
that make the structural model unidentified.

In an n-variable VAR model, where the B matrix is n × n, we
need to make (n2 − n)

/
2 restrictions to be identified.

Importantly, identification allows us to distinguish the reduced
form residuals (e1t and e2t) from the structural innovations
(εyt and εzt).

In our simple case

B =

[
1 b12
0 1

]
,B−1 =

[
1 −b12
0 1

]
, which implies

[
e1t
e2t

]
=

[
1 −b12
0 1

] [
εyt
εzt

]
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Identifying Structural VAR Models

To create a recursive system of equations, we make B upper
triangular.

This forces (n2 − n)
/

2 elements of B to be zero.

When we impose this kind of recursive structure on the
relationship between the reduced-form and structural
disturbances (via B−1), we call it a Choleski decomposition.

The Choleski decomposition creates an ordering of the
variables where some are causally prior to others.

Once we are identified, we can do innovation accounting
analysis.
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The Impulse Response Function

Just as a univariate autoregressive (AR) process has a moving
average (MA) representation, a vector autoregression (VAR)
has a vector moving average (VMA) representation.

Our reduced-form (first-order) VAR is[
yt
zt

]
=

[
a10
a20

]
+

[
a11 a12
a21 a22

] [
yt−1
zt−1

]
+

[
e1t
e2t

]
Without an initial condition, the solution to this model is[

yt
zt

]
=

[
ȳ
z̄

]
+
∞∑
i=0

[
a11 a12
a21 a22

]i [
e1t
e2t

]
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The Impulse Response Function

We can write this in terms of the structural disturbances by
substituting et = B−1εt[

yt
zt

]
=

[
ȳ
z̄

]
+

1

1− b12b21

∞∑
i=0

[
a11 a12
a21 a22

]i [
1 −b12
−b21 1

] [
εyt−i
εzt−i

]
It is useful to simplify this expression by defining

φi =
Ai

1− b12b21

[
1 −b12
−b21 1

]
which gives[

yt
zt

]
=

[
ȳ
z̄

]
+
∞∑
i=0

[
φ11(i) φ12(i)
φ21(i) φ22(i)

] [
εyt−i
εzt−i

]
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The Impulse Response Function

The four sets of coefficients–φ11(i), φ12(i), φ21(i), φ22(i)–are
the impulse response functions.

The coefficient φjk(i) gives the effect of a one-unit innovation
in variable k at time t on variable j at time t + i .

We typically plot these coefficients to display how the
variables in the system respond to various shocks.

It is best to bootstrap the confidence intervals for the φjk(i).
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Forecast Error Variance Decomposition

The forecast error variance decomposition tells us the
proportion of the movement in the time series for a particular
variable that is attributable to its own innovations/shocks
versus the innovations/shocks in other variables.

This gives us a nice quantitative summary of how important
one variable is for explaining the dynamics of another.

More specifically, in the case of our two-equation VAR for
{yt} and {zt}, this decomposition tells us how much of our
uncertainty about future values of yt is attributable to the
(unpredictable) white noise process underlying yt versus the
(unpredictable) white noise process underlying zt .
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Forecast Error Variance Decomposition

To better understand forecast error variance decomposition it
is useful to compare forecast error variance in the univariate
and multivariate cases.

The time t forecast error for yt+j is et(j) = yt+j − Etyt+j .

In the univariate AR(1) case, for example, the time t forecast
error for yt+2 is

et(2) = a1(yt+1 − Etyt+1) + εt+2

= εt+2 + a1εt+1
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Forecast Error Variance Decomposition

This generalizes to j periods into the future as

et(j) = εt+j + a1εt+j−1 + ...+ aj−11 εt+1

The variance of this forecast error is

var[et(j)] = σ2[1 + a21 + ...+ a
2(j−1)
1 ]

In the case of a pth-order VAR for {yt} and {zt}, the
equivalent quantities for forecasts of yt are

eyt(j) = φ11(0)εyt+j + φ11(1)εyt+j−1 + ...+ φ11(j − 1)εyt+1

+φ12(0)εzt+j + φ21(1)εzt+j−1 + ...+ φ21(j − 1)εzt+1

var[eyt(j)] = σ2
y [φ11(0)2 + φ11(1)2 + ...+ φ11(j − 1)2]

+σ2
z [φ12(0)2 + φ21(1)2 + ...+ φ21(j − 1)2]
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Determining Lag Length and Selecting Variables

To this point we have worked with a two-equation first-order
VAR. In practice, we will not know the values of p and n
beforehand, and so one of the first steps in our analysis is to
specify the reduced-form VAR.

To this end, we use a Likelihood Ratio test of cross-equation
restrictions and the multivariate generalizations of the AIC
and SBC.
The Likelihood Ratio Statistic is

LR = (T − c)(ln |Σr | − ln |Σur |)

where T is the number of usable observations, c is is the number

of parameters estimated in each equation of the unrestricted model,

and |Σ| is the determinant of the variance covariance matrix for the

restricted (r) and unrestricted (ur) models.
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Determining Lag Length and Selecting Variables

Under the null hypothesis, LR is distributed as a χ2 with
degrees of freedom equal to the overall number of restrictions
in the system.

If we are evaluating lag length, the overall number of
restrictions in the system is n2(∆p). For example, in a
four-equation VAR, if we are testing 8 versus 4 lags, the
overall number of restrictions is 64.

If we are evaluating whether or not to add another variable to
an n-equation system, the overall number of restrictions is np.
For example, in a two-equation fourth-order VAR, if we are
testing whether to add a third variable, the number of
restrictions is 8. The unrestricted model has two equations
with 13 parameters each, and the restricted model has two
equations with 9 parameters each.
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Determining Lag Length and Selecting Variables

The multivariate generalizations of the AIC and SBC are

AIC = T ln |Σ|+ 2N
SBC = T ln |Σ|+ N ln(T )

where N is the total number of parameters in the system of
equations.
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Granger Causality Tests

Granger causality implies that current and past values of one
time series are useful for forecasting future values of another
time series.

In the context of a VAR, this amounts to a F -test of the null
hypothesis that all of the coefficients on the lags of a
particular variable are jointly zero.

For example, in a pth-order VAR for {yt} and {zt}, yt does
not Granger cause zt if

a21(1) = a21(2) = ... = a21(p) = 0

Note that Granger causality tests do not evaluate the
contemporaneous (zero-order) relationship between yt and zt ,
which could be causal.
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How to Conduct VAR Analysis

1 Select the variables for the VAR model based on your theory.

2 Choose the appropriate lag length for the model and evaluate
your variable selection using the likelihood ratio test and the
multivariate generalizations of AIC and SBC.

3 Conduct Granger causality tests for all the variables in the
model.

4 Conduct Innovation Accounting analysis.
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