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Deterministic and Stochastic Trends

Deterministic and Stochastic Trends

@ Time series processes can be decomposed into three parts:
the trend, the stationary component, and noise.

@ The trend component accounts for changes in the nature of
the time series over time.

@ Time series processes with trends are non-stationary. The
mean, variance, or both are a function of time.

@ We need to properly account for trends in dynamic processes
in order to test hypotheses with time series data.
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Deterministic and Stochastic Trends

Deterministic Trends

@ A deterministic trend is one where realizations of the time
series process are a fixed function of time, such as a
high-order polynomial

2
Ye = Bo + bit + Bat® + fat’

o Clearly, in this case, E(y:) depends on t.
o If we add a stationary component to the trend, for example,

Yt = Bo + Bt + Bot® + B3t + A(L)e;

The process is said to be trend-stationary. Long-run
forecasts will converge to the trend.

@ In the simplest case, we have y; = Sy + 1t, a linear trend,
which can be expressed as

Ay: = o, or Ay = fo + €+ (with noise)



Deterministic and Stochastic Trends

Stochastic Trends

@ A stochastic trend is one where realizations of a random
process have permanent effects on the nature of a time series.
In the simplest case, we have a random walk process

Yt = Yi—1+eror Ay, = &

The solution to this first-order difference equation is

t
Ye =Y+ ZEI'
i=1

Hence, the effects of stochastic shocks do not decay over time.
This means that the variance of a random walk is time
dependent

Var(yt) = Var(gt + Et—1 + ...+ 81) = t0'2
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Deterministic and Stochastic Trends

Mixed Trends

@ A random walk with drift
Ye=ao+ Ye—1+er or Ay, = ag + €
has a trend that is partially deterministic and partially
stochastic.
@ The solution to this model is y; = yy + agt + Z i

o Generalizations include the trend plus noise and trend plus
irregular models

t

Yt =yo +aot+ > &+t
i=1

and

t
Yt = Yo+ aot + > &+ A(L)n:
i=1

respectively, where 7; is white noise.
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Deterministic and Stochastic Trends

Detrending and Differencing

@ In order to do time series analysis we need to distinguish the
trend and stationary components, and the appropriate method
depends on whether the trend is deterministic or stochastic.

o If a trend is stochastic, we difference the data to isolate the
stationary component. The process is difference-stationary.

@ In the case of a random walk with drift, we have

E(Ayt) = E(ao + Et) = qq
var(Ay;) = E(Ay; — ag)? = E(&;)? = 02
cov(Ayr, Ayr—s) = E(er,e1-5) =0

o If the trend is deterministic, to isolate the stationary
component, we detrend the data by regressing {y:} on a
high-order polynomial function of time.

@ The order of the polynomial can be determined by t-tests and
F-tests as well AIC and SBC measures of fit.
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Spurious Regressions

Spurious Regressions

@ It should be clear that two times series with deterministic
trends will correlate spuriously.

@ If the true data generating process is

fy(£) + eyt
fz(t) + €zt

Yt
Zt

and we estimate the regression

Y = 5Zt + Eyt,

then ey will contain f,(t), which will correlate with z; through
fz(t). The estimate of 3 will suffer from omitted variable bias.
Moreover, because the {ey;} are not independent, our
standard error estimates will be biased as well.
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Spurious Regressions

Spurious Regressions

@ What if two times series have stochastic trends? Will they
also correlate spuriously?

@ The answer in this case is not as obvious. However, Granger
and Newbold (1974) showed that if the true data generating
process is

Yt =Yi-1+Ept
Zy =21t €z

and we estimate the regression

Ye = Bo+ P12z + eyt

we will reject the null hypothesis more often than suggested
by our p-values. In their Monte Carlo simulations, t-tests
rejected the null hypothesis 5 = 0 about seventy-five
percent of the time.
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Dickey-Fuller Tests

Dickey-Fuller Tests

o Detecting purely deterministic trends is relatively easy. F and
t-tests will work.

@ Detecting purely stochastic and mixed trends is more
complicated.

@ We cannot rely on ACF plots. In finite samples, the ACF of
an integrated process will look like a stationary
near-integrated process.

@ Dickey and Fuller developed their tests around three
equations:

Ayr =vyt-1+ et
Ayr = a0 +vyt-1 &t
Ay = a0 +vyt—1 + axt + &t
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Dickey-Fuller Tests

Dickey-Fuller Tests

@ Dickey and Fuller developed their tests around three
equations:
Ayt =yr-1+ e
Ay = a0 +vyt-1 t &t
Ayr = a0 +vyt-1 + a2t + &t
@ Under the null hypothesis v = 0, the first equation is a pure

random walk. The second equation adds a drift term, and the
third equation adds a drift and linear time trend.

@ Note that under the null hypothesis. The process is
non-stationary, the variance of y; is a function of time and
becomes infinitely large as t increases.

@ Thus, standard t and F-tests, which assume constant and
finite variance, are not appropriate.
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Dickey-Fuller Tests

Dickey-Fuller Tests

@ A Dickey-Fuller test is conducted by estimating one of the
three regression, computing the relevant t and F-statistics
and comparing these against the empirical critical values
identified via simulation under the null hypothesis.
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Dickey-Fuller Tests

Extensions: Augmented Dickey-Fuller Test

@ What if the time series process is a higher order autoregressive
process?

Ye=aotatyt—1+ a2+ ...+ apyt—p T €t

@ The augmented Dickey-Fuller test uses the regression

p
Ay; = ag +vyr—1+ Z BiAyt—iy1 + €t
=2

p p
where’yz—(l—za,) and sz—Zaj-
j=i

i=1
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Dickey-Fuller Tests

Extensions: Perron's Test

@ What if there's a structural break in the time series?
@ Perron’s test allows us to distinguish a random walk with a

pulse from a trend-stationary process with a structural break
in the intercept.

Hy:y:=ao+ye—1+ p1Dp+ et
A1t yr =ao+ axt+ paDp + &

@ The test proceeds as follows:
© Detrend the data using the alternative model with residuals y;.
@ Estimate the regression 9, = a1y;_1 + &;.
© Check for serialkcorrelation and estimate
Ve=a1fe-1+ > BiAYe_; + 4, if needed.
i=1
© Calculate the t-statistic for the null hypothesis a; = 1 and
compare against Perron’s table of critical values.
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Univariate Decompositions

Beveridge and Nelson Decomposition

@ If a time series has a stochastic trend plus either noise or an
irregular part, it may be interesting to decompose the series
into its permanent (trend) and temporary (stationary)
components.

@ One method for doing this is the Beveridge and Nelson
decomposition, which can be used for any ARIMA (p,1,q)
model.

e Start by considering an ARIMA (0,1,2) process

Ye=ao+ Yi—1 + €t + Prer—1 + Bacr_2

@ The solution for y; is
t

ye=aot+yo+ » e
i=1

where e; = ; + f16¢_1 + Pocr_a.
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Univariate Decompositions

Beveridge and Nelson Decomposition

t+s
@ The solution for yiisis ap(t+s)+yo+ > &
i=1

@ Substitute for yy using the solution for y;

t t+s
Vi+s = ao(t+ s) + {yt — ot — Z ei:| + E €
i=1 i=1

=aoS+yr+ ) ey
i=1

@ Rewriting in terms of ;, we have
S s S
Yt+s = aoS + yr + Z Eeti + P Z5t—1+i + B2 Z Et—2+i
i=1 i=1 i=1

@ Through recursive substitution, it can be shown that
Eiyeys = aos + ye + (81 + B2)er + Pacr—1



Univariate Decompositions

Beveridge and Nelson Decomposition

@ The time-t forecast of y; s is the current level of the
stochastic trend plus the forecast of the deterministic trend:
E:yirs = pt + ags. Solving for p; gives

fe + @S =yt + aos + (b1 + P2)ee + Boge—1
or
pe = Ye + (B + B2)er + Bace1
@ Since the temporary component of y; is y; — us — agt, we have
Temporary = y; — [y: — aot + (81 + Ba)er + Bace—1]
= _(Bl + 62)€t — Bogi—1

@ Hence, the difference between the observed {y;} and the
stochastic trend is perfectly negatively correlated with the
temporary part of {y;:}. This is the identifying assumption
that allows us to perform the decomposition.

@ The decomposition proceeds in five steps.
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Univariate Decompositions

Beveridge and Nelson Decomposition

@ Difference y; and estimate ag, £1, and 5> as the parameters of
a stationary ARMA(0,2) model.

@ Use the ARMA model to make in-sample forecasts of each y;
and y;_1.
© Set the forecast errors equal to £; and £;_1 respectively.

€0 = Yo — 4o

€1=1Y1 — Yo — a0 — Bico
g2 =Yyr—y1 — ao — B1e1 — Baco

@ Solve for the irregular component (61 + B2)er + Bacr_1

© The trend is uy = (81 + B2) €t + Paer—1 + ¥+ and the transitory
component is Yy — [it.
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Univariate Decompositions

Hodrick and Prescott Decomposition

@ The Hodrick-Prescott filter chooses p; to minimize the
following sum of squares

7
!

[(pes1 — p1e) — (pe — pe—1)?

>

1 T
T Z (}/t - ,Ut)2 +
t=1

@ Note that when X is zero, the solution is u+ = y:, and when
A — 00, the result is a linear time trend.

||
N

t

@ Hence, high values of A smooth the time series.

@ There is also an unobserved components decomposition,
which we will cover when we get to state-space models.

Jude C. Hays Time Series Analysis



	Deterministic and Stochastic Trends
	Spurious Regressions
	Dickey-Fuller Tests
	Univariate Decompositions

