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Deterministic and Stochastic Trends

Time series processes can be decomposed into three parts:
the trend, the stationary component, and noise.

The trend component accounts for changes in the nature of
the time series over time.

Time series processes with trends are non-stationary. The
mean, variance, or both are a function of time.

We need to properly account for trends in dynamic processes
in order to test hypotheses with time series data.
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Deterministic Trends

A deterministic trend is one where realizations of the time
series process are a fixed function of time, such as a
high-order polynomial

yt = β0 + β1t + β2t
2 + β3t

3

Clearly, in this case, E (yt) depends on t.

If we add a stationary component to the trend, for example,

yt = β0 + β1t + β2t
2 + β3t

3 + A(L)εt

The process is said to be trend-stationary. Long-run
forecasts will converge to the trend.

In the simplest case, we have yt = β0 + β1t, a linear trend,
which can be expressed as

∆yt = β0, or ∆yt = β0 + εt (with noise)
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Stochastic Trends

A stochastic trend is one where realizations of a random
process have permanent effects on the nature of a time series.

In the simplest case, we have a random walk process

yt = yt−1 + εt or ∆yt = εt

The solution to this first-order difference equation is

yt = y0 +
t∑

i=1

εi

Hence, the effects of stochastic shocks do not decay over time.

This means that the variance of a random walk is time
dependent

var(yt) = var(εt + εt−1 + ...+ ε1) = tσ2
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Mixed Trends

A random walk with drift

yt = a0 + yt−1 + εt or ∆yt = a0 + εt

has a trend that is partially deterministic and partially
stochastic.

The solution to this model is yt = y0 + a0t +
t∑

i=1

εi

Generalizations include the trend plus noise and trend plus
irregular models

yt = y0 + a0t +
t∑

i=1

εi + ηt

and

yt = y0 + a0t +
t∑

i=1

εi + A(L)ηt

respectively, where ηt is white noise.
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Detrending and Differencing

In order to do time series analysis we need to distinguish the
trend and stationary components, and the appropriate method
depends on whether the trend is deterministic or stochastic.

If a trend is stochastic, we difference the data to isolate the
stationary component. The process is difference-stationary.
In the case of a random walk with drift, we have

E (∆yt) = E (a0 + εt) = a0
var(∆yt) = E (∆yt − a0)2 = E (εt)

2 = σ2

cov(∆yt ,∆yt−s) = E (εt , εt−s) = 0

If the trend is deterministic, to isolate the stationary
component, we detrend the data by regressing {yt} on a
high-order polynomial function of time.

The order of the polynomial can be determined by t-tests and
F -tests as well AIC and SBC measures of fit.
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Spurious Regressions

It should be clear that two times series with deterministic
trends will correlate spuriously.

If the true data generating process is

yt = fy (t) + εyt
zt = fz(t) + εzt

and we estimate the regression

yt = βzt + eyt ,

then eyt will contain fy (t), which will correlate with zt through
fz(t). The estimate of β will suffer from omitted variable bias.
Moreover, because the {eyt} are not independent, our
standard error estimates will be biased as well.
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Spurious Regressions

What if two times series have stochastic trends? Will they
also correlate spuriously?

The answer in this case is not as obvious. However, Granger
and Newbold (1974) showed that if the true data generating
process is

yt = yt−1 + εyt
zt = zt−1 + εzt

and we estimate the regression

yt = β0 + β1zt + eyt

we will reject the null hypothesis more often than suggested
by our p-values. In their Monte Carlo simulations, t-tests
rejected the null hypothesis β = 0 about seventy-five
percent of the time.
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Dickey-Fuller Tests

Detecting purely deterministic trends is relatively easy. F and
t-tests will work.

Detecting purely stochastic and mixed trends is more
complicated.

We cannot rely on ACF plots. In finite samples, the ACF of
an integrated process will look like a stationary
near-integrated process.

Dickey and Fuller developed their tests around three
equations:

∆yt = γyt−1 + εt
∆yt = a0 + γyt−1 + εt
∆yt = a0 + γyt−1 + a2t + εt
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Dickey-Fuller Tests

Dickey and Fuller developed their tests around three
equations:

∆yt = γyt−1 + εt
∆yt = a0 + γyt−1 + εt
∆yt = a0 + γyt−1 + a2t + εt

Under the null hypothesis γ = 0, the first equation is a pure
random walk. The second equation adds a drift term, and the
third equation adds a drift and linear time trend.

Note that under the null hypothesis. The process is
non-stationary, the variance of yt is a function of time and
becomes infinitely large as t increases.

Thus, standard t and F -tests, which assume constant and
finite variance, are not appropriate.

Jude C. Hays Time Series Analysis



Deterministic and Stochastic Trends
Spurious Regressions

Dickey-Fuller Tests
Univariate Decompositions

Dickey-Fuller Tests

A Dickey-Fuller test is conducted by estimating one of the
three regression, computing the relevant t and F -statistics
and comparing these against the empirical critical values
identified via simulation under the null hypothesis.
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Extensions: Augmented Dickey-Fuller Test

What if the time series process is a higher order autoregressive
process?

yt = a0 + a1yt−1 + a2yt−2 + ...+ apyt−p + εt

The augmented Dickey-Fuller test uses the regression

∆yt = a0 + γyt−1 +

p∑
i=2

βi∆yt−i+1 + εt

where γ = −
(

1−
p∑

i=1
ai

)
and βi = −

p∑
j=i

aj .
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Extensions: Perron’s Test

What if there’s a structural break in the time series?

Perron’s test allows us to distinguish a random walk with a
pulse from a trend-stationary process with a structural break
in the intercept.

H1 : yt = a0 + yt−1 + µ1Dp + εt

A1 : yt = a0 + a2t + µ2DL + εt

The test proceeds as follows:
1 Detrend the data using the alternative model with residuals ŷt .
2 Estimate the regression ŷt = a1ŷt−1 + εt .
3 Check for serial correlation and estimate

ŷt = a1ŷt−1 +
k∑

i=1

βi∆ŷt−i + εt , if needed.

4 Calculate the t-statistic for the null hypothesis a1 = 1 and
compare against Perron’s table of critical values.
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Beveridge and Nelson Decomposition

If a time series has a stochastic trend plus either noise or an
irregular part, it may be interesting to decompose the series
into its permanent (trend) and temporary (stationary)
components.
One method for doing this is the Beveridge and Nelson
decomposition, which can be used for any ARIMA (p,1,q)
model.
Start by considering an ARIMA (0,1,2) process

yt = a0 + yt−1 + εt + β1εt−1 + β2εt−2

The solution for yt is

yt = a0t + y0 +
t∑

i=1

ei

where et = εt + β1εt−1 + β2εt−2.
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Beveridge and Nelson Decomposition

The solution for yt+s is a0(t + s) + y0 +
t+s∑
i=1

ei

Substitute for y0 using the solution for yt

yt+s = a0(t + s) +

[
yt − a0t −

t∑
i=1

ei

]
+

t+s∑
i=1

ei

= a0s + yt +
s∑

i=1

et+i

Rewriting in terms of εt , we have

yt+s = a0s + yt +
s∑

i=1

εt+i + β1

s∑
i=1

εt−1+i + β2

s∑
i=1

εt−2+i

Through recursive substitution, it can be shown that

Etyt+s = a0s + yt + (β1 + β2)εt + β2εt−1
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Beveridge and Nelson Decomposition

The time-t forecast of yt+s is the current level of the
stochastic trend plus the forecast of the deterministic trend:
Etyt+s = µt + a0s. Solving for µt gives

µt + a0s = yt + a0s + (β1 + β2)εt + β2εt−1

or
µt = yt + (β1 + β2)εt + β2εt−1

Since the temporary component of yt is yt −µt − a0t, we have

Temporary = yt − [yt − a0t + (β1 + β2)εt + β2εt−1]
= −(β1 + β2)εt − β2εt−1

Hence, the difference between the observed {yt} and the
stochastic trend is perfectly negatively correlated with the
temporary part of {yt}. This is the identifying assumption
that allows us to perform the decomposition.
The decomposition proceeds in five steps.
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Beveridge and Nelson Decomposition

1 Difference yt and estimate a0, β1, and β2 as the parameters of
a stationary ARMA(0,2) model.

2 Use the ARMA model to make in-sample forecasts of each yt
and yt−1.

3 Set the forecast errors equal to εt and εt−1 respectively.

ε0 = y0 − a0
ε1 = y1 − y0 − a0 − β1ε0
ε2 = y2 − y1 − a0 − β1ε1 − β2ε0
...

4 Solve for the irregular component (β1 + β2)εt + β2εt−1

5 The trend is µt = (β1 + β2) εt + β2εt−1 + yt and the transitory
component is yt − µt .
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Hodrick and Prescott Decomposition

The Hodrick-Prescott filter chooses µt to minimize the
following sum of squares

1

T

T∑
t=1

(yt − µt)2 +
λ

T

T−1∑
t=2

[(µt+1 − µt)− (µt − µt−1)]2

Note that when λ is zero, the solution is µt = yt , and when
λ→∞, the result is a linear time trend.

Hence, high values of λ smooth the time series.

There is also an unobserved components decomposition,
which we will cover when we get to state-space models.
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