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In the beginning, there was...

W
Once we have W, we can

1 Test for spatial correlation in our outcomes.

2 Estimate Spatial Econometric Models.

3 Identify the source of spatial clustering.

4 Calculate diffusive effect across space.
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Spatial and Temporal Dependence

When we observe outcomes (e.g., presidential approval) across
time, they almost always exhibit temporal dependence.

Knowing the outcome at time t − 1 will help us to predict the
outcome at time t.

Figure: Presidential Approval and the 9/11 Attacks
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Spatial and Temporal Dependence

When we observe outcomes (e.g., democracy scores) across
space, they almost always exhibit spatial dependence.
Knowing the outcome at at one location will help us to
predict outcomes at proximate locations.

Figure: The Geography of Democracy
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Time-series and Spatial Regression Models

Here’s what we call a first-order spatial autoregressive model.
It includes a spatial weights matrix W that produces a
spatial lag of the outcome variable.

y = ρWy + Xβ + ε

Here’s what we call a first-order temporal autoregressive
model. It includes a temporal lag operator L that produces
a temporal lag of the outcome variable.

yt = φL1yt + Xtβ + εt
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Temporal Lag Operators and Spatial Weights Matrices

The temporal lag operator L is defined as a linear operator
such that

Liyt ≡ yt−i

Returning to the first-order temporal lag model

yt = φL1yt + Xtβ + εt ⇔ yt = φyt−1 + Xtβ + εt

Note that we could write this model in matrix notation using
a temporal lag matrix

y = ρLy + Xβ + ε
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Temporal Lag Operators and Spatial Weights Matrices

A Spatial-Weights Matrix...

W =



0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 .5 0 .5 0
0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 .5 .5 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0


...is an N × N matrix with elements wij that reflect the degree of
connectivity from unit j to i .
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Creating Spatial Weights Matrices w/Shapefiles

Shapefiles (ext .shp) contains information regarding the
location, shape and attributes of geographical features.

Shapefiles are available to download from many sites (e.g.,
http://www.gadm.org/).

Figure: GADM Shapefiles for Indonesia
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“This we know: All things are connected”

Mantra #1: Tobler’s Law

“I invoke the first law of geography: everything is related to
everything else, but near things are more related than distant
things.” - Tobler (1970)
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Spatial Association, Correlations, Clustering
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Spatial Association, Correlations, Clustering
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Spatial Correlation

The first to recognize the inferential problems produced by spatial
associatioins was Sir Francis Galton (lesser known for developing
the following concepts: standard deviation, properties of the
bivariate normal distribution, correlation, the regression line, and
regression toward the mean).

Galton’s (1889) Problem:

“It was extremely desirable for the sake of those who may wish to
study the evidence for Dr. Tylor’s conclusions, that full information
should be given as to the degree in which the customs of the tribes
and races which are compared together are independent. It might
be, that some of the tribes had derived them from a common
source, so that they were duplicate copies of the same original.
Certainly, in such an investigation as this, each of the observations
ought, in the language of statisticians, to be carefully weighted.”
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Spatial Associations

Spatial correlation from interactions arises in several ways:

1 Common Exposure (Observables & Unobservables)

2 Spillovers (Outcomes & Predictors)

3 Selection

Separating these kinds of effects in observation data is difficult
because empirically they look very similar
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Common Exposure, Spillovers, Selection
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Sources of Spatial Correlation

We can think about this more formally. Let y be an n× 1 vector of
outcomes (e.g., democracy). Correlated outcomes implies:

cov(yi , yj) 6= 0

Suggested this could be for 4 reasons (or any combination):

yi = f (xi ) and cov(xi , xj) 6= 0: Clustering on Observables

yi = f (xi , xj): Spillovers in Covariates

yi = f (εi ) and cov(εi , εj) 6= 0: Clustering on Unobservables

yi = f (yj): Spillovers in Outcomes (Interdependence)
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Sources of Spatial Correlation

Correlated Outcomes

Unobservables

(Clustering) Spillovers

Local Global

Observables

Clustering Spillovers

Local Global
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Spatial Theory/Analysis in Social Sciences

Spatial econometrics is a relatively new field (as compared to time
series), yet it’s impact across the social sciences is already
profound:

1 Many theoretical contexts where spatial dependence indicated

2 Mutlifarious mechanisms by which spatial dependence arises

3 Wide substantive range where we expect spatial dependence

4 Already central in many literatures
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General Spatial Theory: Common Shocks

Actors possess similar characteristics (ex. natural endowments
which span across units) causing unit outcomes to co-vary.
Formally, we could note, as in Andrews (2005), these
common-factor residuals and/or predictors as satisfying:

ui = C ′gu
∗
i

xi = C ′gx
∗
i

where Cg is a random common (e.g., group) factor with random
factor loadings u∗i & x∗i . Therefore, if units i and j are each
members of group g they are jointly impacted by the respective
loading.

E.g., policy or technological innovations which change in the costs
of inputs or demand (holding supply fixed) impact the revenues of
producers of a good even where there is no direct interaction
between them.
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General Spatial Theory: Interdependence

Strategic, and therefore spatial, theories of interdependence are
ubiquitous and central in the social sciences:

- i ’s preferences, utilities, actions, choices, outcomes depends
on j

- Definition: yj = f (yj 6=i ) not simply corr(yi ,yj 6=i ) 6= 0
correlated

Brueckner’s (2003) generic theory of strategic interactions is
widely applicable

negative externalities =⇒ strategic complementary (respond
in same direction) =⇒ competitive races & early-mover
advantages

positive externalities =⇒ strategic substitution (respond in
opposite directions) =⇒ free-riding & late-mover advantages
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General Spatial Theory: Spatial Spillovers

Interdependence seems natural, and likely, when the unit is
individuals (or proxies), but with social aggregates –
unemployment rates, crime rates, aggregate demand for cigarettes
– this seems unlikely. Instead we expect spillovers:

knowledge spillovers

industry spillovers

growth spillovers
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Spatial in Social Science: Multifarious Mechanisms

In political science:
Simmons et al (2005) list is influential in IR & CP

Competition
Coercion
Learning
Emulation

Other influential works in long history on policy diffusion in
American politics literature

Long discussed in geography:

Haegerstrand (1967) canonical

Manski (2000) summarizes micro & macro-econometric
perspective:

strategic interdependence arises any time some unit’s actions
affect the marginal utility of other’s actions via interactions,
expectations, or preferences

Jude C. Hays jch61@pitt.edu Time-Series-Cross-Section Data Analysis

mailto:jch61@pitt.edu


Spatial in Social Science: Substantive Contexts

Security Policy (e.g., alliances, wars, etc. . . )
decisions to initiate, intervene/enter, exist

Environmental Politics (e.g., air-pollution regulation)
Environmental spillovers
Costs of regulation

Regulatory Politics (e.g., standard setting)
Attractiveness depends on who & how many others use

Legislative Behavior: representatives votes depend on others’
votes

Electoral Politics & Voting Behavior
candidate selection, campaign strategy, etc. . .

Coups, riots, revolts. . .

Peer-effects

International (or interstate) diffusion (e.g., policies,
institutions, regimes)

CPE & IPE: increasing globalization, monetary policy, etc.

Jude C. Hays jch61@pitt.edu Time-Series-Cross-Section Data Analysis

mailto:jch61@pitt.edu


Point Process

Figure: US Homicides in 2015 (Points)

Inverse distance

K-nearest neighbor

Sphere of influence
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Polygons

250

500

750

1000

Figure: US Homicides in 2015 (Polygons)
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Representing space with polygons

There are two types of weights commonly used:

1 Weights based on shared membership/boundaries

2 Weights based on distance
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Weights based on membership/border

These weights matrices have discrete elements wij which assume a
value of 1 if some condition (e.g., shared border, joint group
membership, etc. . . ) is met and 0 otherwise. An oft-used example
is contiguity:

wij =

{
1, if borderi ∩ borderj 6= ∅
0, otherwise.

W =

0 0 1
0 0 0
1 0 0


Matrices tend to be sparse

Often confront ‘islands’

Can make distance-based weights discrete (e.g., 1 if dij < 50)
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Regular Grids & Polygons: Rook Contiguity

i jj
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j
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Regular Grids & Polygons: Queen Contiguity
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Regular Grids & Polygons: 2nd order (rook)
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Weights based on distance

These weights matrices are based on the distance dij
(centroid-centroid, capital-capital, etc. . . ) between each unit i and
j . An oft-used example is inverse-distance:

wij =
1

dij

W =

 0 1/dij 1/dij
1/dij 0 1/dij
1/dij 1/dij 0


Diagonal wii is always 0 (cannot be a neighbor with yourself)

Distance-based spatial-weights matrices are dense
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Implications of different measures
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On the spatial-weights matrix

Important to consider when specifying the spatial-weights matrix:

1 How accurately does W capture the true network?

2 Is W exogenous?

3 (How) should I normalize W?
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How accurate is W?

We never observe the true connectivity in the network. W is
merely the researchers best guess at the implied network.

If W is far off consequences are clear:

power of diagnostic tests is low

model parameters are not consistently estimated

accurate model specification is impaired
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How accurate is W?

Given the importance of W, how should one select this matrix?

Let theory guide you (Neumayer and Plumper, forthcoming)

Select W empirically using goodness-of-fit criteria

AIC/BIC as discussed previously
Log-likelihood (Stakhovych and Bijmolt 2009)
Bayesian posterior model probability (LeSage and Pace 2009)

Estimate multiple-W models (Franzese, et al. lecture ??)

Critique: LeSage and Pace (2014, 218) argue that the notion that
inferences are “sensitive to the use of a particular weight matrix as
perhaps the biggest myth about spatial regression models”

Note, however, they are referring to different transformations
of fundamentally similar measures (e.g., inverse distance vs.
power distance weights)
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Is W exogenous?

As we noted, we treat the spatial weights matrix as an exogenous
(and known) network (known to, and pre-supplied by researcher).
In non-geographic weight settings this assumption seems
increasingly specious.

Consequences: Inconsistent estimators

Solutions: Co-evolution models

An area within Spatial Econometrics that still demands more
attention.
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Should we normalize W?

Researchers often normalize their spatial weights matrix to:

Avoid singularities

Remove dependence on scale factors

Facilitate interpretation

Two common approaches arerow normalization and
max-eigenvalue normalization.

Other approaches: column normalization (Leenders 2002) and Cliff
and Ord (1975) approach discussed in Corrado and Fingleton 2012.

Relevant literature: Kelejian and Prucha 2010; Corrado and
Fingleton 2012; Vega and Elhorst 2014; Neumayer and Plumper
(forthcoming).
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Row Normalization

Row normalization deflates all elements wij by the total number of
connections for i such that rows sum to unity. That is, every
non-zero element of the weights matrix WRS is now given as:

wij∑n
j wij

Benefits: This restricts the parameter space (for spatial effects) to
the interval (−1, 1), avoiding singularities in the spatial multiplier.
Furthermore, it allows us to interpret spatial effects as representing
the average effect of ones neighborhood.

Costs: causes lags to lose theoretical meaning (Vega and Elhorst
2014)

Asymmetric influence as wij 6= wji

Mutual proportions between the elements is lost

Jude C. Hays jch61@pitt.edu Time-Series-Cross-Section Data Analysis

mailto:jch61@pitt.edu


Max-Eigenvalue Normalization

To avoid the issues of row normalization, various scalar
normalization strategies have been proposed. Most widely
advanced is to scale the matrix by the maximum eigenvalue:

W

λmax

As with row normalization max-eigenvalue normalization restricts
the parameter space to the interval (-1,1), avoiding singularities,
but does not change the mutual proportions between the elements
of the weights matrix.
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Next steps...

Once we have W, we

1 Test for spatial correlation in our outcomes.

2 Estimate Spatial Econometric Models.

3 Identify the source of spatial clustering.

4 Calculate diffusive effect across space.

We will cover these topics next time.

Jude C. Hays jch61@pitt.edu Time-Series-Cross-Section Data Analysis

mailto:jch61@pitt.edu

