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Figure: Weekly AFDC Benefits

Why do welfare benefits cluster geographically?
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Interdependence vs. Clustering

Why do welfare benefits and regime types cluster geographically?

Interdependence: Welfare migration induces a localized
race-to-the-bottom in benefits. Diffusion in regime type. E.g.,
countries learn from and emulate their neighbors.

Clustering: Spatially correlated determinants of welfare
benefits and regime type. E.g., states politically dominated by
Democrats pay more than those dominated by Republicans,
and party dominance clusters regionally; wealthy countries are
more likely to be democratic, and there are rich and poor
“neighborhoods.”

How do we distinguish these possibilities?
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Do my outcomes cluster?

The most popular test for spatial association is Moran’s I ,

I =
N

S

∑
i

∑
j wij(yi − ȳ)(yj − ȳ)∑

i (yi − ȳ)2
,

where S =
∑N

i=1

∑N
j=1 wij .

Or, with OLS residuals

I =
N

S

ε′Wε

ε′ε

When W is row-standardized, Moran’s I is the slope
coefficient from the regression of Wy on y.
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Figure: Moran’s I for AFDC Benefits
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Interdependence vs. Clustering: LM Tests

Now that we know cov(y,Wy) 6= 0, how can we identify the
source of this covariance? Consider the general model where

y = ρWy + Xβ + ε
X = φWX + X0

ε = λWε+ u

If we estimate the model

y = Xβ + ε,

and we assume ρ = 0, we can test the restriction that λ = 0.

LMλ =

(
ε̂′Wε̂/σ̂2ε

)2
T

,

where
T = tr[(W′ + W)W].
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Interdependence vs. Clustering: LM Tests

The problem is that this test has power against the incorrect
alternative. If ρ 6= 0, under the null hypothesis λ = 0,
cov(ε̂,Wε̂) 6= 0.

Fortunately, Anselin et al. (1996) have developed a robust LM
test for the null hypothesis λ = 0 that does not make any
assumptions about ρ.

The basic strategy is to remove the portion of the cov(ε̂,Wε̂)
that can be attributable to cov(ε̂,Wy).

LM∗λ =

(
ε̂′Wε̂/σ̂2ε −Ψε̂′Wy/σ̂2ε

)2
T [1−Ψ]

A robust LM test for ρ = 0 (LM∗ρ ) can be developed similarly.
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Interdependence vs. Clustering: LM Tests

These tests provide a possible way to distinguish common
exposure from diffusion.

If cov(y,Wy) 6= 0 and both LM∗ρ and LM∗λ fail to reject their
respective null hypotheses, one can conclude that the
correlation is driven by clustering on observables.

If cov(y,Wy) 6= 0, LM∗ρ fails to reject and LM∗λ rejects, one
can conclude that the correlation is driven by clustering on
unobservables.

If cov(y,Wy) 6= 0, LM∗ρ rejects and LM∗λ fails to reject, one
can conclude that the correlation is driven by outcome
interdependence.
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Maximum Likelihood Estimation

Multivariate change of variables theorem:

g(y) = f (r−1(y)) |J(y)|

The spatial-lag model is:

y = ρWy + Xβ + ε⇒ ε = (I− ρW) y − Xβ = Ay − Xβ

The likelihood for ε is:

L(ε) =

(
1

σ22π

)N/2

exp

(
− ε
′ε

2σ2

)
The inverse function is: ε = r−1(y) = (I− ρW) y − Xβ

The Jacobian is: ∂ε
∂y = (I− ρW) = A

Thus, the likelihood for y is

L(y) = |A|
(

1

σ22π

)N/2

exp

(
− 1

2σ2
(Ay − Xβ)′ (Ay − Xβ)

)
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Calculating Spatial Multipliers

The spatial lag model is

y = ρWy + Xβ + ε

Solving for the reduced-form gives

y = M(Xβ + ε),

where M = (I− ρW)−1 is the spatial multiplier.
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Bootstrapping Confidence Intervals

Our uncertainty about the spatial multiplier stems from our
uncertainty about the estimated parameters β̂ and ρ̂.

We can generate empirical confidence intervals by sampling
from the following bivariate normal distribution.[

β
ρ

]
∼ N

([
β̂
ρ̂

]
,

[
v̂ar(β̂) ĉov(β̂, ρ̂)

ĉov(β̂, ρ̂) v̂ar(ρ̂)

])
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