The Calculus of Common Functions

A function is "a relation that assigns one element of the range to each element of the domain."
Functions

Some more rules for derivatives:
Product: $\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x} g(x)+g(x) \frac{d}{d x} f(x)$
Quotient: $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d}{d x} f(x)-f(x) \frac{d}{d x} g(x)}{g(x)^{2}}$
Chain Rule: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$, where $y=f(u), u=g(x)$
Some techniques for integration:
Integration by Substitution: $\int w(u) d x=\int\left[w(u) \frac{d x}{d u}\right] d u$
Integration by Parts: $\int u d v=u v-\int v d u$
Order for choosing $u: 1$) \log function, 2) power function and 3) exponential function.

The Properties of Matrix Operations

Matrix Transposition Properties

- Invertibility Property

$$
\left(\mathbf{X}^{\prime}\right)^{\prime}=\mathbf{X}
$$

- Additive Property

$$
(\mathbf{X}+\mathbf{Y})^{\prime}=\mathbf{X}^{\prime}+\mathbf{Y}^{\prime}
$$

- Multiplicative Property

$$
(\mathbf{X Y})^{\prime}=\mathbf{Y}^{\prime} \mathbf{X}^{\prime}
$$

- Scalar Multiplication Property

$$
(c \mathbf{X})^{\prime}=c \mathbf{X}^{\prime}
$$

- Inverse Transpose Property

$$
\left(\mathbf{X}^{-1}\right)^{\prime}=\left(\mathbf{X}^{\prime}\right)^{-1}
$$

- Symmetric Matrix Property

$$
\mathbf{X}^{\prime}=\mathbf{X}
$$

Matrix Multiplication Properties

If the matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are conformable for multiplication, then

- Associative Property

$$
(\mathrm{AB}) \mathbf{C}=\mathbf{A}(\mathrm{BC})
$$

- Distributive Property

$$
\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}
$$

- Transpose of a Product

$$
(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}
$$

Matrix Determinant Properties

- Transpose Property

$$
|\mathbf{X}|=\left|\mathbf{X}^{\prime}\right|
$$

- Diagonal or Triangular Matrix Property $(n \times n)$

$$
|\mathbf{X}|=\prod_{i=1}^{n} x_{i i}
$$

- Identity Matrix Property $(n \times n)$

$$
|\mathbf{I}|=1
$$

- Scalar Multiplication Property $(n \times n)$

$$
|c \mathbf{X}|=c^{n}|\mathbf{X}|
$$

- Multiplicative Property

$$
|\mathbf{X Y}|=|\mathbf{X}||\mathbf{Y}|
$$

- Inverse Property

$$
\left|\mathbf{X}^{-1}\right|=\frac{1}{|\mathbf{X}|}
$$

Matrix Inverse Properties

- Diagonal Matrix Property \mathbf{X}^{-1} has diagonal values $1 / x_{i i}$ and zeros elsewhere. Therefore, $\mathbf{I}^{-1}=\mathbf{I}$.
- Iterated Inverse Property

$$
\left(\mathbf{X}^{-1}\right)^{-1}=\mathbf{X}
$$

- Scalar Multiplication Property

$$
(c \mathbf{X})^{-1}=\frac{1}{c} \mathbf{X}^{-1}
$$

- Multiplicative Property

$$
(\mathbf{X Y})^{-1}=\mathbf{Y}^{-1} \mathbf{X}^{-1}
$$

The Trace of a Matrix and Its Properties

The trace of a square matrix is the sum of its diagonal values.

$$
\operatorname{tr}(\mathbf{X})=\sum_{i=1}^{n} x_{i i}
$$

- Identity Matrix Property

$$
\operatorname{tr}\left(\mathbf{I}_{n}\right)=n
$$

- Scalar Multiplication Property

$$
\operatorname{tr}(c \mathbf{X})=c \times \operatorname{tr}(\mathbf{X})
$$

- Matrix Addition Property

$$
\operatorname{tr}(\mathbf{X}+\mathbf{Y})=\operatorname{tr}(\mathbf{X})+\operatorname{tr}(\mathbf{Y})
$$

- Matrix Multiplication Property

$$
\operatorname{tr}(\mathbf{X Y})=\operatorname{tr}(\mathbf{Y X})
$$

- Transposition Property: $\operatorname{tr}\left(\mathbf{X}^{\prime}\right)=\operatorname{tr}(\mathbf{X})$.

Matrix Algebra and Calculus

Calculating the determinant (using row 1):

$$
\operatorname{det}(\mathbf{A})=(-1)^{1+1} \times a_{11} \times \operatorname{det}\left(\mathbf{A}_{11}\right)+(-1)^{1+2} \times a_{12} \times \operatorname{det}\left(\mathbf{A}_{12}\right)+\ldots+(-1)^{1+n} \times a_{1 n} \times \operatorname{det}\left(\mathbf{A}_{1 n}\right)
$$

where $\mathbf{A}_{\mathbf{i j}}$ is the submatrix formed by deleting row i and j from \mathbf{A}.
Inverting a $n \times n$ matrix

$$
\mathbf{A}^{-1}=\frac{1}{|\mathbf{A}|} \mathbf{C}^{\prime}
$$

where

$$
\mathbf{C}=\left[\begin{array}{cccc}
\mathbf{A}_{11}(-1)^{1+1} & \mathbf{A}_{12}(-1)^{1+2} & \ldots & \mathbf{A}_{1 n}(-1)^{1+n} \\
\mathbf{A}_{21}(-1)^{2+1} & \mathbf{A}_{22}(-1)^{2+2} & \ldots & \mathbf{A}_{21}(-1)^{2+n} \\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{A}_{n 1}(-1)^{n+1} & \mathbf{A}_{n 2}(-1)^{n+2} & \ldots & \mathbf{A}_{n n}(-1)^{n+n}
\end{array}\right]
$$

Cholesky's decomposition for $\boldsymbol{\Sigma}=\mathbf{L} \mathbf{L}^{\prime}$

$$
\begin{gathered}
\ell_{j j}=\sqrt{\sigma_{j j}-\sum_{k=1}^{j-1} \ell_{j k}^{2}} \\
\ell_{i j}=\frac{1}{\ell_{j j}}\left(\sigma_{i j}-\sum_{k=1}^{j-1} \ell_{i k} \ell_{j k}\right) \text { for } i>j
\end{gathered}
$$

If we have a multivariate scalar function $f(\mathbf{x})=f\left(x_{1}, x_{2} \ldots x_{m}\right)$, the ($m \times 1$) gradient vector is

$$
\nabla f=\left[\begin{array}{c}
f_{x_{1}} \\
f_{x_{2}} \\
\vdots \\
f_{x_{m}}
\end{array}\right]
$$

If we have a multivariate scalar function $f(\mathbf{x})=f\left(x_{1}, x_{2} \ldots x_{m}\right)$, the $(m \times m)$ Hessian matrix is

$$
\nabla^{2} f=\mathbf{H}=\left[\begin{array}{cccc}
f_{x_{1} x_{1}} & f_{x_{1} x_{2}} & \cdots & f_{x_{1} x_{m}} \\
f_{x_{2} x_{1}} & f_{x_{2} x_{2}} & \cdots & f_{x_{2} x_{m}} \\
\cdots & \cdots & \cdots & \cdots \\
f_{x_{m} x_{1}} & f_{x_{m} x_{2}} & \cdots & f_{x_{m} x_{m}}
\end{array}\right]
$$

If we have a multivariate scalar function $\mathbf{f}(\mathbf{x})=\mathbf{f}\left(x_{1}, x_{2} \ldots x_{m}\right)$, the $(n \times m)$ Jacobian matrix is

$$
\mathbf{J}=\left[\begin{array}{cccc}
f_{1 x_{1}} & f_{1 x_{2}} & \cdots & f_{1 x_{m}} \\
f_{2 x_{1}} & f_{2 x_{2}} & \cdots & f_{2 x_{m}} \\
\cdots & \cdots & \cdots & \cdots \\
f_{n x_{1}} & f_{n x_{2}} & \cdots & f_{n x_{m}}
\end{array}\right]
$$

Optimizing Multivariate Scalar Functions

- The multivariate version of the FOC sets the $(m \times 1)$ gradient vector of first-partial derivatives equal to an $(m \times 1)$ vector of zeros and solves for \mathbf{x}^{*}.
- The multivariate version of the SOC checks to see whether the $(m \times m)$ Hessian matrix of second-partial derivatives and cross-partial derivatives is convex or concave at \mathbf{x}^{*}.
- If \mathbf{H} is concave, $f(\mathbf{x})$ has a local maximum at \mathbf{x}^{*}.
- If \mathbf{H} is convex, $f(\mathbf{x})$ has a local minimum at \mathbf{x}^{*}.
- The largest local maximum is the global maximum, and the smallest local minimum is the global minimum.
- How do we know if \mathbf{H} is concave or convex?
- If the Hessian, \mathbf{H}, is negative definite, then the function $f(\mathbf{x})$ is concave at \mathbf{x}^{*}.
- If the Hessian, \mathbf{H}, is positive definite, then the function $f(\mathbf{x})$ is convex at \mathbf{x}^{*}.
- An $n \times n$ matrix $\boldsymbol{\Sigma}$ is positive definite if the scalar $\mathbf{x}^{\prime} \boldsymbol{\Sigma} \mathbf{x}$ is strictly positive for every non-zero column vector \mathbf{x}.
- An $n \times n$ matrix $\boldsymbol{\Sigma}$ is positive definite if and only if all of its eigenvalues, $\boldsymbol{\omega}$, are positive.

Eigenvalues and Eigenvectors

- Let \mathbf{A} be an $N \times N$ matrix. The vector \mathbf{v} is an eigenvector of \mathbf{A}, if it satisfies

$$
\mathbf{A} \mathbf{v}=\omega \mathbf{v}
$$

for a scalar ω, which is called the eigenvalue of \mathbf{A} that corresponds to \mathbf{v}.

- The eigenvalues of a square matrix \mathbf{A} are the values of ω that solve

$$
\operatorname{det}\left(\mathbf{A}-\omega \mathbf{I}_{N}\right)=0
$$

- This equation is called the characteristic equation of \mathbf{A} and the determinant on the left hand side is called the characteristic polynomial of \mathbf{A}.

