The Calculus of Common Functions

A function is "a relation that assigns one element of the range to each element of the domain."

Some more rules for derivatives:

Product: $\frac{d}{dx} [f(x)g(x)] = f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x)$ Quotient: $\frac{d}{dx} \left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\frac{d}{dx}f(x) - f(x)\frac{d}{dx}g(x)}{g(x)^2}$ Chain Rule: $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$, where y = f(u), u = g(x)Some techniques for integration: Integration by Substitution: $\int w(u)dx = \int \left[w(u)\frac{dx}{du}\right]du$ Integration by Parts: $\int udv = uv - \int vdu$

Order for choosing u: 1) log function, 2) power function and 3) exponential function.

The Properties of Matrix Operations

Matrix Transposition Properties

• Invertibility Property • Additive Property • Multiplicative Property • Scalar Multiplication Property • Inverse Transpose Property • Symmetric Matrix Property $\mathbf{X}' = \mathbf{X}'$ $\mathbf{X}' = \mathbf{X}'$

Matrix Multiplication Properties

If the matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are conformable for multiplication, then

• Associative Property $({\bf AB})\,{\bf C}={\bf A}\,({\bf BC})$ • Distributive Property ${\bf A}\,({\bf B}+{\bf C})={\bf AB}+{\bf AC}$ • Transpose of a Product $({\bf AB})'={\bf B}'{\bf A}'$

Matrix Determinant Properties

- Transpose Property
- Diagonal or Triangular Matrix Property $(n \times n)$
 - $|\mathbf{X}| = \prod_{i=1}^{n} x_{ii}$

 $|{\bf I}| = 1$

 $|\mathbf{X}| = |\mathbf{X}'|$

- Identity Matrix Property $(n \times n)$
- Scalar Multiplication Property $(n \times n)$ • Multiplicative Property • Inverse Property $|\mathbf{X}\mathbf{Y}| = |\mathbf{X}| |\mathbf{Y}|$ • $|\mathbf{X}\mathbf{Y}| = |\mathbf{X}| |\mathbf{X}|$

Matrix Inverse Properties

- Diagonal Matrix Property \mathbf{X}^{-1} has diagonal values $1/x_{ii}$ and zeros elsewhere. Therefore, $\mathbf{I}^{-1} = \mathbf{I}$.
- Iterated Inverse Property
- Scalar Multiplication Property
- Multiplicative Property

$$(c\mathbf{X})^{-1} = \frac{1}{c}\mathbf{X}^{-1}$$
$$(\mathbf{X}\mathbf{Y})^{-1} = \mathbf{Y}^{-1}\mathbf{X}^{-1}$$

 $(\mathbf{X}^{-1})^{-1} = \mathbf{X}$

The Trace of a Matrix and Its Properties

The trace of a square matrix is the sum of its diagonal values.

$$tr(\mathbf{X}) = \sum_{i=1}^{n} x_{ii}$$

 $tr(\mathbf{I}_n) = n$

 $tr(c\mathbf{X}) = c \times tr(\mathbf{X})$

 $tr(\mathbf{X} + \mathbf{Y}) = tr(\mathbf{X}) + tr(\mathbf{Y})$

- Identity Matrix Property
- Scalar Multiplication Property
- Matrix Addition Property
- Matrix Multiplication Property
- $\operatorname{tr}(\mathbf{X}\mathbf{Y}) = \operatorname{tr}(\mathbf{Y}\mathbf{X})$
- Transposition Property: $tr(\mathbf{X}') = tr(\mathbf{X})$.

Matrix Algebra and Calculus

Calculating the determinant (using row 1):

$$\det(\mathbf{A}) = (-1)^{1+1} \times a_{11} \times \det(\mathbf{A}_{11}) + (-1)^{1+2} \times a_{12} \times \det(\mathbf{A}_{12}) + \dots + (-1)^{1+n} \times a_{1n} \times \det(\mathbf{A}_{1n})$$

where \mathbf{A}_{ij} is the submatrix formed by deleting row i and j from \mathbf{A} .

Inverting a $n \times n$ matrix

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \mathbf{C}'$$

where

$$\mathbf{C} = \begin{bmatrix} \mathbf{A}_{11}(-1)^{1+1} & \mathbf{A}_{12}(-1)^{1+2} & \dots & \mathbf{A}_{1n}(-1)^{1+n} \\ \mathbf{A}_{21}(-1)^{2+1} & \mathbf{A}_{22}(-1)^{2+2} & \dots & \mathbf{A}_{21}(-1)^{2+n} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{A}_{n1}(-1)^{n+1} & \mathbf{A}_{n2}(-1)^{n+2} & \dots & \mathbf{A}_{nn}(-1)^{n+n} \end{bmatrix}$$

Cholesky's decomposition for $\Sigma = \mathbf{L}\mathbf{L}'$

$$\ell_{jj} = \sqrt{\sigma_{jj} - \sum_{k=1}^{j-1} \ell_{jk}^2}$$
$$\ell_{ij} = \frac{1}{\ell_{jj}} \left(\sigma_{ij} - \sum_{k=1}^{j-1} \ell_{ik} \ell_{jk} \right) \text{ for } i > j$$

If we have a multivariate scalar function $f(\mathbf{x}) = f(x_1, x_2...x_m)$, the $(m \times 1)$ gradient vector is

$$\nabla f = \begin{bmatrix} f_{x_1} \\ f_{x_2} \\ \vdots \\ f_{x_m} \end{bmatrix}$$

If we have a multivariate scalar function $f(\mathbf{x}) = f(x_1, x_2...x_m)$, the $(m \times m)$ Hessian matrix is

$$\nabla^2 f = \mathbf{H} = \begin{bmatrix} f_{x_1 x_1} & f_{x_1 x_2} & \cdots & f_{x_1 x_m} \\ f_{x_2 x_1} & f_{x_2 x_2} & \cdots & f_{x_2 x_m} \\ \cdots & \cdots & \cdots & \cdots \\ f_{x_m x_1} & f_{x_m x_2} & \cdots & f_{x_m x_m} \end{bmatrix}$$

If we have a multivariate scalar function $\mathbf{f}(\mathbf{x}) = \mathbf{f}(x_1, x_2...x_m)$, the $(n \times m)$ Jacobian matrix is

$$\mathbf{J} = \begin{bmatrix} f_{1x_1} & f_{1x_2} & \cdots & f_{1x_m} \\ f_{2x_1} & f_{2x_2} & \cdots & f_{2x_m} \\ \cdots & \cdots & \cdots & \cdots \\ f_{nx_1} & f_{nx_2} & \cdots & f_{nx_m} \end{bmatrix}$$

Optimizing Multivariate Scalar Functions

- The multivariate version of the FOC sets the $(m \times 1)$ gradient vector of first-partial derivatives equal to an $(m \times 1)$ vector of zeros and solves for \mathbf{x}^* .
- The multivariate version of the SOC checks to see whether the $(m \times m)$ Hessian matrix of second-partial derivatives and cross-partial derivatives is convex or concave at \mathbf{x}^* .
 - If **H** is concave, $f(\mathbf{x})$ has a *local* maximum at \mathbf{x}^* .
 - If **H** is convex, $f(\mathbf{x})$ has a *local* minimum at \mathbf{x}^* .
 - The largest local maximum is the *global* maximum, and the smallest local minimum is the *global* minimum.
- How do we know if **H** is concave or convex?
 - If the Hessian, **H**, is negative definite, then the function $f(\mathbf{x})$ is concave at \mathbf{x}^* .
 - If the Hessian, **H**, is positive definite, then the function $f(\mathbf{x})$ is convex at \mathbf{x}^* .
- An $n \times n$ matrix Σ is positive definite if the scalar $\mathbf{x}' \Sigma \mathbf{x}$ is strictly positive for every non-zero column vector \mathbf{x} .
- An $n \times n$ matrix Σ is positive definite if and only if all of its eigenvalues, ω , are positive.

Eigenvalues and Eigenvectors

• Let **A** be an $N \times N$ matrix. The vector **v** is an **eigenvector** of **A**, if it satisfies

$$\mathbf{A}\mathbf{v}=\omega\mathbf{v},$$

for a scalar ω , which is called the **eigenvalue** of **A** that corresponds to **v**.

• The eigenvalues of a square matrix ${\bf A}$ are the values of ω that solve

$$\det(\mathbf{A} - \omega \mathbf{I}_N) = 0$$

• This equation is called the **characteristic equation** of **A** and the determinant on the left hand side is called the **characteristic polynomial** of **A**.