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Monte Carlo simulations are commonly used to test the performance of estimators and models from rival methods,

under a range of data-generating processes. This tool improves our understanding of the relative merits of rival

methods in different contexts, such as varying sample sizes and violations of assumptions. When used, it is common to

report the bias or the root mean squared error of the different methods. It is far less common to report the standard

deviation, overconfidence, coverage probability, or power. Each of these six performance statistics provides important,

and often differing, information regarding a method’s performance. Here, we present a structured way to think about

Monte Carlo performance statistics. In replications of three prominent papers, we demonstrate the utility of our ap-

proach and provide new substantive results about the performance of rival methods.

ne of the great strengths of political science as a
discipline has been our enthusiasm for embracing

new methods for testing hypotheses. Whenever the

use of a new method is proposed, one of the first questions
that researchers ask is how it performs relative to existing
methods. To make such assessments, researchers have relied
heavily on performance statistics (e.g., root mean squared
error [RMSE]) of estimators or models from rival methods in
Monte Carlo simulations. This approach of comparing rival
methods has become pervasive in political methodology and
is a core component of some of the most highly cited papers
in all of political science (e.g., Beck and Katz 1995; Keele and
Kelly 2006; King and Zeng 2001; Pliimper and Troeger 2007).
While papers taking this approach have provided a wealth

of helpful advice to applied researchers, we argue that this
advice has often been based on too little information. As we

demonstrate in our review of the literature below, many
papers that use Monte Carlo simulations to make compar-
isons between rival methods use only one or two perfor-
mance statistics and rely most heavily on measures of bias
and RMSE. While these are excellent criteria for assessing
relative performance, we argue that other easily calculable
performance statistics such as standard deviation (SD),
overconfidence, coverage, and power often should also be
reported. Doing so will allow researchers to make more in-
formed decisions about which methods are preferred under
different circumstances.

We write for two audiences: those who wish to produce
Monte Carlo simulations to examine the relative perfor-
mance of different methods, and those who wish to read the
results of Monte Carlo simulations to learn about the relative
performance of different methods. For the first group, we
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provide advice about the benefits of different Monte Carlo
performance statistics. There is a seemingly endless combi-
nation of such statistics to choose from—such as bias and
RMSE or bias and SD. We provide a way to think through
what can be learned from various combinations—for ex-
ample, if an estimator shows no evidence of bias, we explain
what might then be gleaned from the SD. Our article also
helps the second group, readers of Monte Carlo work, to
better understand the trade-offs of various performance
statistics and will encourage them to think more critically
about the conclusions that can be reached from Monte Carlo
simulations. In our literature review, we show that there is
tremendous variation in what gets reported. For these readers,
we provide useful definitions of the six most common per-
formance statistics. We then offer a structured way to think
about what gets reported, what might be missing, and how
this should influence our decisions about which estimator or
model to use.

To demonstrate the advantages of our recommended ap-
proach, we replicate parts of three prominent, recent articles
that use Monte Carlo experiments to guide researchers about
their choice of methods. In each case, our replication dem-
onstrates that using a broader set of performance statistics
provides new insights into the relative merits of rival methods.
In two of these instances (Clark and Linzer 2015; Wilkins
2018), we find that the recommended method in the original
article may not always be preferred. In the third (Hanmer and
Kalkan 2013), although our evaluation of the best perform-
ing method remains the same as the one recommended in
the original article, we demonstrate that the best performing
method is problematic for statistical inference.

We begin with an overview of the use of Monte Carlo
experiments in political science and present our argument for
when and why researchers should consider different perfor-
mance statistics when evaluating the relative utility of dif-
ferent methods. We then review the use of performance
statistics in papers published in the major political science
journals and discuss what is missing. We replicate parts of
three prominent articles in political science and conclude
with a discussion of how our recommendations should be
used in future research.

MONTE CARLO EXPERIMENTS AND PERFORMANCE
STATISTICS

Monte Carlo simulations are employed across a broad range
of academic and applied disciplines." Political science res-

1. For general overviews of Monte Carlo methods, see Barbu and Zhu
(2020) or Thomopoulos (2012).
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earchers, like those in other fields (e.g., Hastie, Tibshirani, and
Friedman 2009; Robert and Casella 2010), have used Monte
Carlo methods for two main purposes—first, for evaluating
the performance of rival methods and, second, for the esti-
mation or interpretation of statistical models (e.g., Gill 2014;
Jackman 2009). In this article, our focus is on the use of
Monte Carlo simulations, also referred to as “Monte Carlo
experiments,” for the evaluation of the performance of rival
methods.

Generically, we can think of Monte Carlo experiments as a
staged competition between two or more rival methods of
estimating the same quantity of interest, which we will label §.>
The standard practice is for 6 to be fixed and the data re-
peatedly simulated from one or more user-created stochastic
data-generating processes (DGPs). These DGPs are usually set
up to mimic circumstances that applied researchers are likely
to encounter. For each sample of data, the rival methods are
then used to calculate an estimator, 6.> Performance statistics
are different ways to evaluate the ability of each rival method
to accurately reflect the properties of 6 across #n simulations.

In the remainder of this section, we define and discuss the
crucial aspects of the six performance statistics that we rec-
ommend for reporting (bias, SD, overconfidence, RMSE,
coverage, and power). For each performance statistic, we
provide a definition, the relevant formulas (if needed), and a
short summary of the statistic’s importance.

Bias, standard deviation, and overconfidence

In figure 1, we illustrate bias, SD, and overconfidence for a
hypothetical quantity of interest, 6, and estimates, 6. We
depict the results from a set of hypothetical simulations for
an estimator of the true parameter value 6. The bars depict
the density of the estimated values of 0 and the vertical line
in the center of the figure indicates the expected or average
value of 6.

Bias

Definition and formula. As demonstrated in figure 1, the bias
of an estimator for a quantity of interest is defined as the
difference between the expected value of the estimates of the
quantity from repeated sampling and the value of the quantity

2. We refer to 6 as a “quantity of interest” to reflect the fact that, while
some researchers are focused on the estimation of parameters, others are
focused on the performance of test statistics (Philips 2018) or other quantities
of interest such as long-run multipliers in time series analyses (Webb, Linn,
and Lebo 2020) or indirect effects in spatial analyses (Whitten, Williams, and
Wimpy 2021).

3. Rival methods include different models and estimators. For ease of
exposition, we use the term “estimators” from here on so that we do not
need to repeatedly write “models and estimators.”
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Figure 1. Bias, SD, and overconfidence
in the DGP. When E(f) # 6, as in the figure, the estimator is Standard deviation
biased. Definition and formula. The SD of an estimator is the square
root of the variance of estimates. An estimator has a smaller
Definition. variance than another if its dispersion around its expected
Bias/d] = Elf — 6 = El6 — 6 ) value is less than that of the other estimator. As depicted in
1as[ } - [ ] - [ ] ’ figure 1, this performance statistic measures the square root
Calculation. of the average squared deviation of the values of 6 around
E(0).
1 s
Bias[0] = — 2 (6, — 0). (2)
ni=1 Definition.
Bias is typically calculated as the average deviation of the D[] = \/E[(6 — E[é])z] (3)
estimates of the quantity of interest from the DGP value. This
average is calculated across the simulations. While “average Calculation.
bias” is by far the most commonly calculated quantity, others .
are possibl.e, in.cluding median bias (e.g.,.PickuP and Hc?pkins S/I\)[ il = 1 i b — 1 i a)l. (4)
2022), which is useful when the quantity of interest is not ni=1 ni=1

istri .8 wh i nli i- . . L
normally distributed (e.g,, when calculating nonlinear combi The variance is calculated as the average squared deviation

nations of parameter estimates for long-run effects in time . . .
P & of the estimates from the average estimate. The SD is cal-

series). Researchers may also plot the distribution of each .
) Y P culated as the square root of this value.

estimate’s distance from the true DGP value (cf. Helgason
[2016], who presents box-whisker plots depicting the distribu-

. ) ] X e ) Importance. Because researchers usually encounter only one
tion of absolute bias from rival estimators in his simulations).

sample from the population, SD informs us how close that

quantity is likely to be to E[f], which itself may or may not

Importance. Calculating bias approximates whether using be biased (e.g. E[f] may not equal 8). This measure is most

an estimator in an empirical application would, on average . .
b bP ’ 8% useful as a relative comparison between the SD of two or

across applications, produce estimates that are equal to the . .
more rival estimators.

quantity of interest.*

Overconfidence

4. When making relative comparisons of bias across competing esti- .. .
8 P e Definition and formula. Overconfidence is used to assess the

mators, there may not always be an estimator that is unbiased. Thus re- . o
searchers prefer the estimator that, all else equal, has the lowest bias. For accuracy of estimated standard errors. As we depict in fig-

another discussion of the importance of bias, see Carsey and Harden (2014). ure 1, overconfidence is the SD of the estimates divided by



the expected value of the estimated standard errors for a
quantity of interest.”

Definition.
Overconfidence(d) = E?S’%((éé))} (5)
Calculation.
Overcontidence(d) = — 2!

n : 6
L3 sk(h) o
ni=1

Overconfidence is calculated by dividing the calculated SD
by the average calculated standard error, across the n sim-
ulations. A value of 1 implies accurate standard errors, a
value greater than 1 implies overconfidence, and a value less
than 1 implies underconfidence.

Importance. Most empirical applications of estimators in-
volve statistically testing a theoretically derived hypothesis
against a null hypothesis. In these applications, rejecting the
null hypothesis provides evidence in support of the researcher’s
theory.® Overconfidence means that the standard errors are un-
derestimated, which results in smaller confidence intervals that
increase the probability of rejecting the null hypothesis when it is
true (i.e., we find support for the theory when it is not true). This
scenario can also be described as an increase in type 1 errors,
which are defined as incorrectly rejecting a true null hypothesis.
Underconfidence means that the standard errors are overesti-
mated, which results in larger confidence intervals that decrease
the probability of rejecting a false null hypothesis. This scenario
can also be described as an increase in type 2 errors, which are
defined as incorrectly failing to reject a false null hypothesis.

Root mean squared error, coverage, and power

We illustrate our three other recommended quantities of
interest, RMSE, coverage, and power, in figure 2. As in fig-
ure 1, we show the density of the estimates of § with the bars.
The dashed line on the left side of figure 2 shows the value of
the false null hypothesis, specified as zero, and the dashed

5. Researchers may alternatively calculate standard error bias, which is
defined as E[SE(QZ))] - SD(@). This would be used in the same situations as
eq. (5). See the appendix for a discussion on the relationship between our
measure of overconfidence and others in the literature (e.g., Beck and Katz
1995; Franzese and Hays 2007).

6. Other empirical applications include theories that predict a null
result. In such cases, failing to reject the null hypothesis provides evidence
for the researcher’s theory. See Rainey (2014) for an explanation on how
researchers can evaluate theories that predict a null effect.
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line on the right side of figure 2 shows the DGP value of 6.7
Under the histogram, for eight example estimates (6), we
show the point estimate with a 95% confidence interval to
illustrate how coverage and power are defined.

Root mean squared error

Definition and formula. RMSE is a measure of the average
error of an estimator.® As shown in figure 2, it is defined as the
square root of the expected value of the squared differences
between the estimates and the true value. Alternatively, it can
be expressed as the square root of the sum of squared bias and
the variance of an estimator. RMSE is the combination of bias
and SD, so lower values of RMSE are preferred.

Definition.

RMSE[f] = \/ E[6 —0)] = \/ Bias(f)’ + SD*(8).
(7)

Calculation.

RMSE is calculated by taking the square root of the average
squared difference between the estimates and the true value.

Importance. As is the case with SD, RMSE is most useful for
relative comparisons between two or more estimators. When
evaluating the performance of rival estimators, researchers
may find themselves with estimators that vary in terms of bias
and variance and thus face a bias-variance trade-off. For
example, in the presence of unobserved time-invariant unit
heterogeneity that is correlated with the regressors, the fixed
effects estimator is unbiased but has a larger SD, and the
random effects estimator is biased but has a smaller SD (Clark
and Linzer 2015). As a result, researchers may use RMSE to
evaluate whether the losses in accuracy from one estimator
are larger than those from other estimators.’

7. As discussed in the appendix, power is dependent on the specifi-
cation of the null hypothesis, most commonly 0 as shown in fig. 2.

8. It is noteworthy that RMSE is only one possible weighted combi-
nation of bias and variance. Researchers may choose other weighted com-
binations of bias and variance based on their requirements.

9. Since RMSE is a function of both bias and SD, it may seem re-
dundant that we recommend researchers calculate all three performance
statistics. See below for a discussion of why calculating all three perfor-
mance statistics is important.
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Figure 2. RMSE, coverage, and power

Coverage probability

Definition. As we illustrate in figure 2, coverage probability
is the proportion of times the confidence intervals of the es-
timator encompass the true DGP value. It is calculated as the
proportion of estimated confidence intervals that contain the
DGP value. If the eight confidence intervals depicted in figure 2
were the only simulations that had been carried out, the cov-
erage probability would be 0.375 since only three of the de-
picted intervals include the dashed line for 6. In practice,
researchers typically would conduct many more than eight
simulations and thus have many more than eight confidence
intervals. If the 95% confidence interval is correctly sized, we
expect that in a large number of repeated samples, the con-
structed 95% confidence intervals will not overlap with the true
effect 5% of the time (Jackman 2009)." Thus, one should expect
a coverage probability of 0.95 if one is using 95% confidence
intervals. Coverage probabilities larger than 0.95 mean that the

10. In the appendix we provide some further details on the relation-
ship between coverage probability, power, and relevant researcher choices
of hypothesis test specification.

estimated confidence intervals encompass the true null hy-
pothesis more often than expected, while coverage probabilities
less than 0.95 mean that the estimated confidence intervals
encompass the true null hypothesis less often than expected.

Importance. High (low) coverage probability means a lower
(higher) type 1 error rate (Pr(type 1 error) = 1 — coverage).
However, higher coverage probability is not always better."!
Researchers should prefer coverage probabilities closer to the
confidence level (e.g., a 0.95 coverage probability for the 95%
confidence level). Coverage probability informs researchers
about the probability that an estimator will reject the true null
hypothesis and incorrectly conclude in favor of the alterna-
tive hypothesis (type 1 error).

Power
Definition. The power of an estimator is the proportion of
instances in which the null hypothesis is correctly rejected.

11. For example, a coverage probability greater than 0.95 at the 95%
confidence level indicates overestimated standard errors.



In other words, as we depict in figure 2, power is the pro-
portion of instances in which the confidence intervals reject
the false null hypothesis. It is calculated as the proportion of
estimated confidence intervals that do not contain the null
hypothesis. If the eight confidence intervals depicted in fig-
ure 2 were the only simulations that had been carried out, the
power would be 0.875 since only one of the eight confidence
intervals includes the dashed line for 0, the false null hy-
pothesis value in this hypothetical illustration. As we noted in
our discussion of coverage probability, researchers typically
would conduct many more than eight simulations and thus
have many more than eight confidence intervals.

Importance. Low power translates into a high incidence of
type 2 errors (Pr(type 2 error) = 1 — power). Failing to re-
ject the null hypothesis when it is false results in incorrect
inferences about the plausibility of the alternative hypothesis.
As aresult, all else equal, it is important that an estimator has
high power. While coverage probability informs us whether
we can be confident that an estimator will not incorrectly
reject the null hypothesis when it is true, power informs us as
to whether the estimator will correctly reject the null hy-
pothesis when it is false.

APPLYING THE PERFORMANCE STATISTICS

The value of the six performance statistics that we defined in
the previous section will vary across applications. None-
theless, it is useful to think about the value of the perfor-
mance statistics that we recommend in general terms and, in
particular, to think about the value of the different perfor-
mance statistics in combination with each other. To do this,
we divide our recommended performance statistics into two
groups of three.

The first group of performance statistics—RMSE, cov-
erage probability, and power—evaluates an estimator’s per-
formance on point estimates and inference. The second group
of performance statistics—bias, SD, and overconfidence—
helps to diagnose why an estimator has large or small average
error (RMSE), why it has high or low coverage probability,
and why it has high or low power. We recommend that
researchers begin by using the first group of performance
statistics to evaluate how an estimator performs in terms of
point estimates and inference and then, if needed, diagnose
and understand these results using the second group of per-
formance statistics."

12. This does not necessarily mean starting with RMSE. For example,
if a study compares the performance of different robust standard errors
and we know that all of the estimators under consideration are unbiased,
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Evaluate

As depicted in figure 3, we divide the evaluation of estimator
performance into point estimates and inference. To be clear,
we expect most producers and readers of Monte Carlo ex-
periments to be interested in both the point estimate and in-
ference performances of estimators.

Point estimates. RMSE is a summary measure of how much
point estimates differ from the true DGP value because of the
systematic over- or underestimation of an estimator (bias) and
the sampling variability (SD). It thus summarizes overall how
far off the estimate will be, on average, from the true value. This
is valuable information when comparing the strengths and
weaknesses of different estimators for point estimates.

Inference. Coverage probability and power inform research-
ers whether type 1 and type 2 errors will be inflated, respec-
tively. These are both important pieces of information when
comparing the strength and weaknesses of different esti-
mators for hypothesis-testing inferences.

Diagnose

The second step in figure 3 is to diagnose the sources of
interesting performances from our evaluation step. While
RMSE, coverage probability, and power provide useful sum-
maries of how well the estimator will perform with respect to
point estimates and hypothesis-testing inferences, they ob-
scure exactly why an estimator performs well or poorly. This is
because they are each a function of multiple fundamental
properties of the estimator. Below, we describe how bias, SD,
and overconfidence help diagnose poor performance with
respect to RMSE, coverage probability, and power.

RMSE. If the RMSE is small, this tells us the bias and SD are
small.”” However, if the RMSE is not small, it does not reveal
whether this is caused by large bias, large SD, or both. It is
also possible that two estimators will have a similar RMSE
even if their bias and SD are substantially different; again,
whether bias and SD differ across estimators is hard to know
without directly calculating these two performance measures.

then we do not recommend starting with RMSE. We do note that coverage
and power are important statistics to understand the performance of such
robust standard errors. We also note that if there is poor coverage or
power, then overconfidence (and SD) can shed light on why this is the
case. Yet, if simulations show no problems with power and coverage (or
they are good enough that we are comfortable with the performance of the
robust standard error), then we can be confident there are no problems
with overconfidence.

13. By “small,” we generally mean close enough to zero that we expect
estimates to be within the precision of our original measures.
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Figure 3. Information provided by performance statistics

Examining bias is valuable because it tells us on average how
well an estimator will perform. A large bias means that an
estimator will perform poorly even if the researcher has taken
steps to minimize random error, for example, with a large
sample size. However, this has limitations. Even if the esti-
mates from repeated sampling are equal to the true value in
the DGP on average, this does not imply that the quantity
estimated from one sample is going to be equal to or close to
the true parameter value. In reality, researchers usually en-
counter only one sample drawn from the underlying popu-
lation. Fortunately, the SD informs us whether the estimated
quantity of interest from a given sample is likely to be closer
to or farther away from the average estimate, although it
cannot tell us whether this average estimate will be close to the
true value. Therefore, in order to diagnose the source of large
RMSE in the point estimate of an estimator, both bias and SD
need to be examined in combination."*

Coverage probability and power. The location and width
of confidence intervals are a function of bias and standard
errors, the latter of which are estimates of SD. As such, both
power and coverage probability are determined by bias, SD,
and overconfidence or some combination of the three. Note
though that SD is probably the least valuable of these three
statistics when considering coverage probability. If there is no
bias, the degree of SD will have no effect on coverage prob-
ability, except to the extent that it affects overconfidence;
underestimated standard errors will result in a lower coverage

14. It is true that bias can be calculated from SD and RMSE, and SD
can be calculated from bias and RMSE, but this involves a substantial
effort on behalf of readers. Further, because RMSE is a nonlinear com-
bination of SD and bias, it is only by reporting both SD and bias that the
relative contribution of each to RMSE is clear.

probability. Consider another scenario in which there is bias.
A larger SD might mitigate the effects of bias but only in-
advertently. For example, if your estimate is very far off from
the true parameter value, the confidence interval may still
include the true parameter if there is a great degree of re-
ported uncertainty in your estimate. In other words, the SD
will not be a source of poor coverage probability, but it might
explain why a badly biased estimator may still have a good
coverage probability. With respect to power, smaller SD or
overconfidence should increase power, but the latter does
so by incorrectly estimating the precision of the estimate.
Holding all else constant, attenuation bias (0 < |E[A]| < |6])
will lower power. Consider a scenario in which there is at-
tenuation bias, high SD, and underconfidence. In this case,
power will be less in contrast to when bias is absent. Infla-
tionary bias (0 < |6] < |E[f]|) will increase power but at the
expense of a poor estimate, on average. Overall, in order to
diagnose the source of problems of inference due to poor
power or coverage probability, we recommend examining
bias, overconfidence, and SD in combination.

Choosing which performance statistics to report
Given the value of the measures for evaluating and diag-
nosing the performances of rival estimators, we recommend
the reporting of all six. We recognize, however, that journal
space is limited and that some authors and journal editors
are inclined to hold the line on the increasingly large sup-
plemental materials documents that accompany published
papers. With this in mind, we provide a guide on which
performance statistics to report:

1. Evaluate the estimators on RMSE, coverage prob-
ability, and power. Use this to identify estimators



that perform poorly and differently with respect to
point estimates (RMSE) or inference (coverage
probability or power). If the estimators perform well
or similarly on one or more performance statistics,
those results need only a brief mention.

2. Diagnose the estimators that perform poorly or dif-
ferently on RMSE, coverage probability, and power,
using the appropriate combination(s) of bias, SD,
and overconfidence, as per figure 3. If the estima-
tors perform well or similarly, we recommend a
brief summary of these results. Otherwise, if the
estimators perform poorly and differently across
these diagnostic performance statistics, then we rec-
ommend that researchers present the results of these
diagnostics in more detail.

We recognize that oftentimes the above guide will lead to the
reporting of all six performance statistics. However, this is
not always the case. For example, consider Philips (2022),
who generates two independent unit roots in one of his
Monte Carlo experiments and compares the performance of
three time series models in terms of type 1 error rates of the
long-run effects—lagged dependent variable model (LDV),
error correction model (ECM), and autoregressive distrib-
uted lag model, or ADL(1,1), with one lag of the dependent
variable and the regressor.”” He finds that all three mod-
els perform similarly, and poorly, in terms of the coverage
probability of the long-run effect. Following our recommen-
dations, he should summarize the results for coverage proba-
bility briefly in text, for example, “I find that all three models
perform similarly with a rejection rate of around 0.2,” and then
present the diagnostic performance statistics—bias, SD, and
overconfidence—that result in such type 1 error findings using
figures or tables.

When presented with a marginal choice between report-
ing all six performance statistics and saving journal/appen-
dix space, we believe that, in an era in which replication files
and online appendixes are the norm, the cost of reporting all
six performance statistics is outweighed by the benefit of
providing a more comprehensive understanding of an esti-
mator to readers. As we demonstrate later in this article,
when examining all six performance statistics, we can learn
novel and important things about estimators that may lead
to conclusions about the preferred estimator different from
those of the original author(s). Before turning to these rep-
lications, we review current practices and what is missing.

15. IDV:y, = o + ¢y, , + B,x, + &, ECM:Ay, = a + ¢y, + B,Ax, +
B,x— + &, and ADL(L,1): y, = a + ¢y, + B,x, + Box,-y + &,
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PATTERNS OF REPORTING PERFORMANCE
STATISTICS

In order to assess the degree to which our recommended
performance statistics are currently being used by political
science researchers in their Monte Carlo simulations, we had
two research assistants each code every published article in
the American Journal of Political Science, the American Po-
litical Science Review, the Journal of Politics, Political Analysis,
and Political Science Research and Methods from 2006 to 2016
that contained the keywords “Monte Carlo” or “simulation.”*

To get a sense of which performance statistics are being
reported and how they are being reported together, we
present the most common patterns of reporting for our
recommended performance statistics in table 1."” Each row
in table 1 depicts a different combination of performance
statistic reporting that we found in our coding, listed in order
from the most to least common. As we can see from this
table, the modal pattern was to report only bias, while the
second most popular pattern was to report both bias and
RMSE. Looking at the bottom row of table 1, we can see that
in terms of overall use, bias was by far the most reported
performance statistic, being present in 85.9% of the studies,
followed by RMSE or mean squared error (MSE), coverage
probability/type 1 error rate, SD, overconfidence, and power/
type 2 error rate.

In the far right column of table 1, we provide a short
summary of what is missing or unknown when researchers
use each pattern of reporting based on our discussion in the
previous section. Note how adding bias or SD to RMSE pro-
vides additional information. Adding each independently
tells us about how one or the other contributes to RMSE, but
adding both bias and SD to RMSE gives a much more com-
plete picture of the sources of RMSE. Because coverage
probability and power are nonlinear combinations of bias,
SD, and overconfidence, it is even more important to provide
all three determinants of coverage probability and power to
understand the sources of these important inferential prop-
erties. Last, we also recognize that tables are not the only way
to report Monte Carlo results; some researchers (e.g., Esarey
2016; Helgason 2016; Honaker, Katz, and King 2002) visually
show more than one quantity of interest—for instance, bias

16. Since publication of Political Science Research and Methods began
in 2013, we coded 2013-16 for that journal. We coded all Monte Carlo
simulations that were presented as a part of published papers and in ap-
pendixes that appeared as a part of the volume in which they were pub-
lished; see the appendix for details.

17. See the appendix for the full table and additional details. We also
found a very small number of papers that reported performance statistics
other than those listed in table 1.
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Table 1. Most Common Patterns of Reporting Performance Statistics in Major Political Science Journals

Performance Statistic

RMSE or  Coverage/ Power/

Bias MSE Type 1 SD  Overconfidence Type 2 Pattern (%) Missing (Unknown)

B 12.7 Average error and one source; inference problems
and two sources

B R 9.9 One source of average error; inference problems
and two sources

R 8.5 Sources of average error; inference problems and

their sources

B C 7.0 Average error and one source; power; two sources
of inference problems

B S 5.6 Average error; inference problems and one source

B C P 5.6 Average error and one source; two sources
of inference problems

B C S 5.6 Average error; power and one source of inference
problems

B R (0] 5.6 One source of average error; inference problems
and one source

B O 4.2 Average error and one source; inference problems
and one source

B S o 4.2 Average error; inference problems

B R C 4.2 One source of average error; power; two sources of
inference problems

85.9 45.1 36.6 29.6 23.9 19.7 Overall use (%)

Note. Letters indicate the particular performance statistic was reported for studies referenced in that row. B = bias, R = RMSE, C = coverage probability,

S = SD, O = overconfidence, P = power. See the appendix for the full table of reporting patterns.

as well as percentiles of the estimates and outliers—through
the use of box-whisker plots.

THREE REPLICATIONS

As we demonstrated in the previous section, political science
researchers usually use three or fewer performance statistics
in their Monte Carlo experiments. While table 1 provides a
brief summary of what is missing or unknown with each of
the observed patterns, in this section we take a closer look by
using the diagram presented in figure 3 to replicate and ex-
tend the analyses of three prominent articles that use Monte
Carlo simulations to assess the relative utility of different
estimators. In each case, the use of additional performance
statistics would have changed, refined, or more strongly sup-
ported their conclusions regarding the desirability of differ-
ent estimators. We first replicate Clark and Linzer (2015) and
provide a full example of following our recommendations. Our
second and third replications are of Wilkins (2018) and Hanmer
and Kalkan (2013), respectively. We report only a summary of
these findings and provide full details in the appendix.

Clark and Linzer replication

Clark and Linzer (2015) weigh in on the debate between
using unit intercepts (i.e., fixed effects) or random unit
intercepts (random effects) to address the issue of time-
invariant unobservable individual effects in panel data. As
the authors state, random effects tend to have a lower vari-
ance than fixed effects, but with the strong assumption that
“the random-effects estimator requires there to be no cor-
relation between the covariate of interest, x, and the unit
effects” (402). Clark and Linzer use RMSE as a measure of
estimator performance across a range of values for J (number
of units) and »n (number of within-unit observations) com-
mon in the social sciences using the following DGP:

Y, = q + Bx; + &, 6 ~ N(0,0ﬁ%ﬁ =1, (9)

x; ~ N(x;,02), (10)

(| F )



where o; are the unit intercepts and x; are within-unit values
of the independent variable drawn from a normal distribu-
tion with unit mean X; and variance o?. The independent and
identically distributed error term is ¢, with mean 0 and
variance o;. The within-unit means X;, and unit intercepts o,
are drawn from a multivariate normal (MVN) distribution
with mean 0, variance 1, and covariance between x; and «;
equal top (p = 0,0.1,0.2,...,0.9, 0.95). Across these con-
ditions, they compare the relative performances for the fol-
lowing three models: feasible generalized least squares random
effects (FGLS-RE), ordinary least squares with fixed effects
(OLS-FE), and ordinary least squares with no adjustments for

the nature of the data (OLS-pooled).
Clark and Linzer find that when within-unit variation is

small (¢, = 1 and o, = 0.2 in their simulations), the num-
ber of within-unit observations (#) is small, and the amount
of correlation between the unit intercepts and the indepen-
dent variable (p) is low, the RMSE of the FGLS-RE estimator
is lower than that of the OLS-FE estimator. That is to say,
even though the assumption underlying random effects has
been violated, the gain in efficiency still outweighs the in-
crease in bias. The authors thus conclude that we should
prefer random effects over fixed effects under these condi-
tions. However, as p increases, the random effects estimator
performs much worse than the fixed effects estimator in
terms of RMSE.

While using RMSE is a good way to examine both bias
and efficiency in a single statistic, we argue that using a sin-
gle statistic to evaluate performance between estimators is
at best somewhat limited and at worst potentially mislead-
ing as to the best model under particular circumstances. To
demonstrate this, we replicate Clark and Linzer’s “sluggish”
Monte Carlo example, in which x has low within-unit var-
iance (02 = 0.2)."® Using the variables (o; and X;) from
equation (11), we then generated the dependent variable y for
unit j at a given within-unit observation i, from equations (9)
and (10). Following the procedure of the authors, we simu-
lated 2,000 data sets across values of p, while ] = 10, 40, 100
and n = 5, 20, 50 were varied. We then estimate OLS-
pooled, OLS-FE, and FGLS-RE models.

In accordance with our recommendations in figure 3, we
begin by evaluating the estimators using RMSE, coverage
probability, and power. Figure 4 shows the RMSE results for
B from the simulations. These results are identical to figure 2
in Clark and Linzer (2015, 406). As is clear from figure 4, the
OLS-FE estimator (solid line) is able to produce an RMSE

18. We also calculate our recommended performance statistics when
o, = 1, what Clark and Linzer call the standard case, in the appendix. Our
overall conclusions remain the same.
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that remains constant as p—the correlation between the unit
intercepts and x,—varies. In contrast, higher levels of p tend
to increase the RMSE for both the FGLS-RE (dashed line)
and the OLS-pooled (dotted line) estimators. Despite this,
when n = 5, both the pooled and random effects models
tend to outperform the fixed effects estimator when p is low.
The same holds for random effects, but not the pooled
model, when ] = 10; if p is low enough, the random effects
estimator performs as well, or better than, the fixed effects
estimator. It is only when J and n become large (n in par-
ticular) that the fixed effects estimator always outperforms
the other two estimators. Thus, were we to only rely on fig-
ure 4, we would reach the same conclusions as Clark and
Linzer, namely, that when within-unit variation in x is small,
there are conditions under which the random effects esti-
mator may be preferred to fixed effects, even when the as-
sumptions underlying the former are violated (when p is
small but not zero) and # is small.

In figure 5, we show the coverage probability statistics of
the estimators (i.e., how often the 95% confidence intervals
include the DGP value of 3 = 1). Across all levels of p, the
coverage probability of the fixed effects estimator remains
constant at .95. Coverage for the random effects estimator is
only that high when p = 0. When the correlation between
the unit effects and the independent variable is nonzero, the
random effects model has a lower coverage probability (in-
creased type 1 error); in fact, at high levels of p, the coverage
probability of the random effects estimator approaches zero.
It should also be noted that, across the board, the pooled
model performs worse on coverage probability than the fixed
effects estimator and worse or as bad as the random effects
estimator.

In figure 6 we consider the power of the estimators; that s,
how often do they (correctly) reject the false null that 8 = 0?
For the most part, all three estimators have enough power to
reject the null hypothesis when J is greater than 40 and # is
greater than 20. However, when n and ] are small, the power
of the fixed effects estimator is substantially lower than that
of the random effects or pooled estimators. This means that
the fixed effects estimator will often fail to reject the false null
hypothesis (increased type 2 error) when presented with
smaller samples, thus leading to incorrect hypothesis-testing
inferences.

As noted in figure 3, RMSE, coverage probability, and
power merely evaluate estimators’ performances with re-
spect to point estimates and inferences and do not provide
any information about the reasons behind such perfor-
mance. To diagnose such performance, we recommend that
researchers calculate bias and SD to diagnose sources of the
average error in the model and bias, SD, and overconfidence
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Figure 4. RMSE of B, Clark and Linzer’s sluggish case. Solid line = OLS-FE, dashed line = FGLS-RE, dotted line = OLS-pooled model; the horizontal axis is

the value of correlation between X; and «; (o).

to diagnose sources of poor coverage probability and power.
In figure 7, we show the bias of each estimator for the same
simulations. These results demonstrate that, as expected, at
any level of correlation between x; and o (), the fixed effects
estimator is either very slightly biased or unbiased and
performs similarly to or better than the pooled and random
effects estimators. Together with the results in figure 4, this
implies that the fixed effects estimator’s RMSE is largely
influenced by SD. The pooled and random effects estimators
are always biased for any nonzero value of p, and this bias
increases as the value of p increases. Only when p = 0 and
there are 10 unit and five within-unit observations do the
pooled and random effects estimators perform better than
fixed effects, and only by a small amount. For any nonzero p,
random effects always performs better than the pooled
model. Overall, in terms of bias, the fixed effects estimator
performs best when taking into consideration the range of
values of ], n, and p selected by Clark and Linzer.

Figure 8 shows the SDs from the three models. From this
figure, we can see that the efficiency gains from the random
effects estimator are greatest when n and J are very small
(top-left panel in fig. 8). These relative gains in efficiency
decrease as both J and n increase, and the SDs of the fixed
effects and random effects estimators are very similar at
n = 50. The pooled estimator almost always has a lower SD
than the fixed effects estimator for n < 50, and the SD of the
pooled estimator converges to that of the random effects
estimator as both Jand p increase. When comparing figures 7
and 8 we find support for Clark and Linzer’s theoretical
claim that, under certain conditions, the efficiency gains
from the pooled and random effects estimators outweigh
their increased bias to produce RMSEs that are lower than
those of the fixed effects estimator.

Following our advice in figure 3, in order to determine
why the fixed effects estimator performs well and the pooled
and random effects estimators perform poorly in terms of
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Figure 5. Coverage probability of B, Clark and Linzer’s sluggish case. Solid line

horizontal axis is the value of correlation between X; and «; (o).

coverage probability, we must analyze overconfidence in
addition to bias and SD. Figure 9 demonstrates whether the
estimators’ standard errors are accurate. As we discussed
above, this is an assessment of whether the overconfidence
measure differs from 1. From figure 9 we can see that across
the board, the pooled estimator is overconfident. When
combined with the bias that we see in figure 7, this over-
confidence in the pooled estimator results in smaller confi-
dence intervals that are less likely to encompass the true 3,
resulting in poor coverage probability and increased type 1
errors. When n < 20, we can see that the poor coverage
probability of the random effects estimator is mainly a
function of bias. However, when n > 20 and p > 0.4, the
random effects estimator’s poor coverage probability is a
result of both its bias and overconfidence. The random ef-
fects estimator only recovers accurate estimates of the SD
when ] > 10and n = 5 or at low levels of p when ] > 10 and
n>5. These results combined with the random effects

= OLS-FE, dashed line = FGLS-RE, dotted line = OLS-pooled model; the

estimator’s low bias at low values of p result in a high cov-
erage probability at these values of p. And, when J > 10 and
n = 5 across high levels of p, poor coverage probability is
largely a result of increasing bias. The fixed effects estimator,
overall, always recovers accurate estimates of the SD of the
sampling distribution. Thus, even though the fixed effects
estimator has a relatively larger SD, its good coverage prob-
ability occurs because it is unbiased and recovers accurate
estimates of the SD of the sampling distribution.

By comparing figures 6 and 8, we can see that the panels in
which the fixed effects estimator has low power are also the
panels in which the fixed effects estimator has large SD
values."” And, since we know from figure 9 that the fixed effects
estimator recovers accurate standard errors across the board,
the fixed effects estimator has large confidence intervals due to

19. These large SD values are due to the constrained variance analyzed
by this estimator that only leverages within-unit variation.
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Figure 6. Power of B, Clark and Linzer’s sluggish case. Solid line = OLS-FE, dashed line = FGLS-RE, dotted line = OLS-pooled model; the horizontal axis is

the value of correlation between X; and «; (o).

its SD, making it more likely that the estimator encompasses
the parameter value specified in the false null hypothesis. For
the pooled and random effects estimators, their bias, low SD
values, and underestimated standard errors result in smaller
confidence intervals that are unlikely to encompass 0, the false
null hypothesis. This results in high power. When ] = 10 and
n = 5, the pooled and random effects estimators have power
less than 1. This is because at p = 0, when both the pooled
and random effects estimators are unbiased, the lower power is
likely to be due to the small sample size.** And, as p increases,
these sample size issues are masked by increasing bias that
moves estimates away from zero, making the rejection of the
false null hypothesis more likely.

There are several conclusions to draw from our replica-
tion and extension of Clark and Linzer’s findings to include

20. See the appendix for an in-depth discussion of how power is
determined.

measures of bias, SD, power, coverage probability, and
overconfidence. First, we are able to exactly replicate their
analyses of RMSE. Second, from an analysis of bias and SD,
in line with Clark and Linzer’s theoretical expectations, we
find that the fixed effects estimator’s relative inefficiency
contributes to its RMSE and that the bias of the pooled and
random effects estimators makes a relatively larger contri-
bution to their RMSE values. Third, the good coverage
probability of the fixed effects estimator is because of its
unbiasedness and ability to recover accurate standard errors,
despite having a relatively larger SD. The poor coverage
probability of the pooled and random effects estimators are
because of their bias and overconfidence. Last, all three
estimators perform well on power. The main exception to
this is for the fixed effects estimator at low values of Jand n. It
is worth noting, however, that sometimes the random effects
and pooled models perform well on power only because of
their sizable bias.
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Figure 7. Bias of B, Clark and Linzer’s sluggish case. Solid line = OLS-FE, dashed line = FGLS-RE, dotted line = OLS-pooled model; the horizontal axis is the

value of correlation between X; and o (p).

Clark and Linzer (2015, 407) write in their conclusion
that “examining the RMSE of both estimators, however, we
demonstrate that there is a range of conditions under which
it may be worth accepting the bias in the random-effects
model if it is associated with a sufficient gain in efficiency,
leading to estimates that are closer, on average, to the true
value in any particular sample.” While we agree with this
conclusion in terms of considerations of point estimates only,
most researchers are also interested in hypothesis-testing in-
ferences. When we diagnose performances on inference, we
reach dramatically different conclusions. This is the case be-
cause we find that the fixed effects estimator substantially
outperforms its rivals on coverage probability. To prefer the
random effects estimator, an applied researcher interested in
inference would have to have a small number of observations
per unit and put a very high premium on type 2 error (power)
over type 1 error (coverage probability) and SD over bias or

be extremely confident that p = 0 (although, outside of sim-
ulated data scenarios, p is unknowable).*!

Summary of replications of Wilkins (2018)

and Hanmer and Kalkan (2013)

In this section, we provide a brief overview of what we found

in our replications and extensions of Wilkins (2018) and

Hanmer and Kalkan (2013). In our appendix we provide a

full discussion and results from these two replications.
Using a DGP in which the autoregression in the error

term varies between 0 and 0.5, Wilkins (2018) compares the

percentage bias and average error (RMSE) in the short-run

21. It is worth noting, however, that from a time series perspective
Clark and Linzer’s DGPs are all static. A recent article by Plimper and
Troeger (2019) demonstrates that some fixed effects estimators can lead to
substantial problems if the underlying dynamics have been misspecified.
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Figure 8. SD of B, Clark and Linzer’s sluggish case. Solid line = OLS-FE, dashed line = FGLS-RE, dotted line = OLS-pooled model; the horizontal axis is the

value of correlation between X; and o (p).

effect of the independent variable of four time series models:
EQ4 (an ADL(2,1) specification, given in eq. [4] of Wilkins
[2018]), LGDV (a lagged dependent variable model), LGDV2
(a lagged dependent variable model with two lags of the DV),
and a static model.”> From his results using only percentage
bias and RMSE, Wilkins concludes that LGDV is the preferred
model at low levels of autocorrelation and EQ4 is the preferred
model at higher levels of autocorrelation. From our extension
of his analysis, we come to fairly different conclusions.

From the evaluation stage, we find that EQ4 has the
highest RMSE at low levels of autocorrelation (less than 0.3).
When there is no autocorrelation, all models have the ex-
pected value of coverage probability (0.95). However, as the
amount of autocorrelation increases, the coverage probability

22. We omit the results from the static model because of its extremely
poor performance.

of the LGDV and LGDV2 models decreases, while that of
EQ4 remains around 0.95. All models have high power. From
our diagnoses, we find that the higher RMSE values of EQ4 at
low levels of autocorrelation (less than 0.3) are because of its
higher SD and that the higher RMSE values of the LGDV and
LGDV2 models at higher levels of autocorrelation (above 0.3)
are mainly because of its bias, which is not offset by its lower
SD. EQ4’s expected coverage probabilities are a result of its
unbiasedness and ability to recover accurate standard errors,
despite having a relatively high SD. The lower coverage
probabilities for the LGDV and LGDV2 models are due to a
combination of bias and overconfidence. The high power for
the LGDV and LGDV2 models is a result of their overconfi-
dence, despite being biased toward the false null hypothesis
(B = 0). Overall, we come to a more nuanced conclusion than
that of Wilkins: in terms of point estimates, the LGDV and
LGDV?2 models are preferred at low levels of autocorrelation,
and EQ4 is almost always preferred in terms of inference.
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Figure 9. Overconfidence of B, Clark and Linzer's sluggish case. Solid line
horizontal axis is the value of correlation between x; and «; (o).

Hanmer and Kalkan (2013) compare the performances of
the average marginal effects (AME) and marginal effects at
means (MEM) approaches for probit models in the presence
of omitted variables.” They compare these marginal effects
when one covariate is excluded to those when the model is
correctly specified and find that the AME approach is pre-
ferred because of its unbiasedness.” In evaluating these two
approaches, our results demonstrate that the AME approach
has lower RMSE values, close-to-expected coverage proba-

23. Both AME and MEM approaches have been used to obtain what is
a typical effect of a shift in an independent variable on predicted proba-
bilities from probit and logit models. Although they can be thought of as
different quantities of inference for users of such models, the goal of the
authors is to compare the performance of these two rival estimators of
typical effects and their sensitivity to omitted variable bias.

24. In this paragraph, we only discuss the replication of model 1,
panel A, table 1 in Hanmer and Kalkan (2013). The entire replication is
provided in the appendix.

OLS-FE, dashed line FGLS-RE, dotted line OLS-pooled model; the

bility, and a power of 1. The MEM approach, however, has a
low coverage probability and a power of 1. In diagnosing
these performances, we find that the lower RMSE values of the
AME approach are due to a combination of its unbiasedness
and lower SD. The AME approach recovers close-to-expected
levels of coverage probability because, while both approaches
perform similarly in recovering accurate standard errors
(overconfidence close to 1), the AME approach is unbiased.
The low coverage probability of the MEM approach, despite its
higher SD, is because of its bias, which also contributes to its
high power. Across the board, the AME approach is preferred.

In table 2, we summarize the results of all three replications
and extensions. In the case of both Clark and Linzer (2015) and
Wilkins (2018), we find that our conclusions differ substan-
tially from those of the original studies. In the case of Hanmer
and Kalkan (2013), we arrive at the same conclusion as the
original study but demonstrate that their conclusions are ro-
bust to our recommended considerations of estimator quality.
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Table 2. Summary of Our Replications and Extensions

Original

Replication and Extension

Clark and Linzer (2015):

Performance statistic
Conclusion

Wilkins (2018):
Performance statistic
Conclusion

R

When the correlation between unit effects and the
predictor, within-unit variation, and the number of
within-unit observations are all low, RMSE dem-
onstrates the RE estimator is better than the FE
estimator

BR

When both the dependent and independent variables
are highly autoregressive, the EQ4 model has lower
bias. At higher levels of serial autocorrelation, the
EQ4 model performs better in terms of RMSE

RCPBSO

Different sample sizes and levels of correlation in-
fluence whether FE or RE performs better in terms
of point estimates, but the FE estimator always
performs better for inference unless the correlation
between unit effects and the predictor is 0

RCPBSO

The LGDV and LGDV2 models perform better for
point estimates at low levels of autocorrelation, and
EQ4 at higher levels. With regard to inference, EQ4
almost always performs best

Hanmer and Kalkan
(2013):

Performance statistic B

Conclusion

The AME approach is preferable to the MEM ap-
proach because it produces less biased marginal

RCPBSO
For the covered circumstances, the AME approach is
always preferred

effects estimates when relevant variables are

omitted

Note. Letters indicate which performance statistics were reported in the original study and in our replication. R = RMSE, C = coverage probability, P =

power, B = bias, S = SD, O = overconfidence.

CONCLUSION
Articles that report the results of Monte Carlo experiments
play an important role in political science. They disperse
knowledge about new statistical techniques and estimator
properties and serve as references for scholars interested in
using these estimators to test their theoretical expectations.
Given that a substantial amount of research in political sci-
ence is shaped by such recommendations, these decisions
should be based on the most important dimensions of estimator
performance. Reasonable people can, of course, disagree about
the relative importance of different performance statistics.
As we mention in the introduction, our article is designed
to help two audiences. For those who produce Monte Carlo
simulations, we offer guidance about which performance
statistics to report. We identify patterns in what gets reported
(as well as what does not) and show how combining statistics
can improve analysis. For those who read Monte Carlo work,
we provide a useful overview of the six most common per-
formance statistics in order to help readers think critically
and systematically about the results from these simulations.
With this in mind, we present a new way to think about the
advantages of the different performance statistics, both inde-
pendently and in combination. For the purposes of evaluating

point estimates, we encourage comparing performances by
examining the RMSE. For the purposes of evaluating inference,
we encourage comparing performances in terms of coverage
probability and power. We believe these three performance
statistics—RMSE, coverage probability, and power—are of
most use to researchers interested in knowing which method to
use because they provide information about the average error
of a method as well as the ability to make accurate hypothesis-
testing inferences. We also recommend that researchers who
want to diagnose the source of performance (good or bad) use
combinations of bias, SD, and overconfidence.
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