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Abstract
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1 Introduction

Stimson (1985) introduced political science to the promise and peril of ‘regression in space

and time,’ heralding a boom in research utilizing space-time data. In the 35 years since, panel

and time-series cross-section (TSCS) data have come to dominate quantitative empirical analyses

in political science. Figure 1 illustrates with the yearly count of keyword text-identified TSCS

articles appearing in the American Political Science Review (APSR), American Journal of Political

Science (AJPS), and Journal of Politics (JOP) from 1980 to 2019.1 In recent years, 2012-2019,

at least 201 articles, nearly 1 of every 8, 25 per year, and 33 in 2019 alone, contained TSCS

data analysis.2 Indeed, TSCS data-analyses have grown by now to dominate empirical political

science.3,4 Yet, few of these TSCS articles, these analyses of data in ‘space and time’, seem to

meaningfully consider both temporal and spatial dependence. Of the 33 TSCS articles in 2019,

only 12 used keywords indicative of considering temporal dependence, and only 2 of considering

spatial dependence, meaning at most 2 could have jointly considered both temporal and spatial

dependence, as we will argue and demonstrate is crucial. Indeed, manual review of 201 TSCS

articles from 2012 to 2019 confirmed that only about 94 modeling temporal dependence directly,5

only about 23 modeling spatial dependence directly6, and merely 12, less than 6%, modeling both

temporal and spatial dependence directly, as we will ultimately recommend.
1Of the 7336 articles in APSR, AJPS, and JOP from 1980 to 2019, we counted those containing keyword roots

time series cross section, panel data, and TSCS. JSTOR’s API data covers from 1980 to 2014 for APSR, 2015
for JOP, and 2018 for AJPS. For more-recent years, we scraped the text directly from each journal’s website.
Our keyword roots for ‘time-series articles’ were [temporal or serial or time] [series or serial or autocorrelation
or correlation or dependence or dynamics or lag(ged) or lagged dependent ], and for ‘spatial analysis’: spatial
[dependence or interdependence or autocorrelation or correlation or correlated or lag(ged)], spatial-lag dependent,
or spatially lagged dependent. More details available in the Appendix.

2Specifically: of the 1745 total articles 2012-2019, keywords identified 277 using TSCS (almost 16%, or about 1
in 6); manual skims confirmed 201 of 277 (76%, or 11.5%=almost 1 in 8 of total) having TSCS data-analysis.

3Also indicative of this predominance: Beck & Katz (1995)’s “What to do (and not to do) with time-series
cross-section data” is the most cited article ever published in the APSR (as per CrossRef and Web of Science).

4Strictly speaking, all data are TSCS, given that anything is observed in a place at a time, so TSCS refers to
the dataset’s dimensionality being of greater than 1 time period and 1 (spatial) unit.

5By directly we mean via inclusion of time-lags; of the rest, 75 use only some time-indicator, time-trend,
&/or differencing strategy, 16 used some other strategy (e.g., time-period random-effects), 4 combine Newey-West
standard errors with these other strategies, and 16 seemed to employ no address of temporal correlation at all.

6I.e., 23 used spatial lags; of the rest, 118 use only some unit fixed-effect strategy, 6 use some spatial random-
effects, 23 apply clustered or panel-corrected standard-error adjustment, leaving 31 with no apparent address of
spatial association.
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Figure 1: Count of articles using TSCS data in the ‘Top-3’ general PS journals, 1980-2019

Methodologically too, notwithstanding this prevalence of TSCS data in applied empirical po-

litical science, many of the unique statistical challenges of TSCS data-analysis remain un- or

under-addressed. In particular, insufficient attention has been paid to the two-dimensional depen-

dence that manifests in spatiotemporal data. Instead, just as applied research typically directly

addresses dependence only in one dimension, time or, less commonly, space, borrowing strategies

from time-serial or spatial-statistical methods designed for unidimensional data, the methodologi-

cal literature also has generally given very little consideration to two-dimensional Spatio-Temporal

dependence and its implications for diagnostics, specification, estimation, and inference.7 Our

understandings of temporal and spatial dependence derive almost exclusively from evaluations of

one-way models that address time-serial or cross-sectional dependence in data that assume away

the other dimension of dependence or that assume one dimension of dependence can be adequately

addressed orthogonally to the emphasized other dimension.

Both applied researchers and political methodologists have generally operated as though strate-
7Some do briefly mention issues of two-dimensional dependence (e.g., Beck & Katz (1995), Beck & Katz (1995),

Wilson & Butler (2007), Franzese & Hays (2007), Beck & Katz (2011)); however, none explore the issues we discuss
here. This paper focuses on proper simultaneous specification of temporal and spatial dependence, i.e., on the
dimension, space and/or time, of (inter)dependence in TSCS data. Cook et al. (2020) focuses instead on proper
specification of the source of (primarily) spatial interdependence, i.e., in y, X, and/or ε.
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gies of addressing dependence in time-series or spatial analysis extend directly to TSCS data-

analysis without requiring significant further consideration. However, when both types of depen-

dence are appreciably present, as would always be expected in real-world TSCS data, a more

complex set of relationships manifests because temporal and spatial dependence are necessarily

related, and, therefore, cannot generally be safely considered separately. Omission or inadequate

address of spatial or temporal dependence will bias estimates of dependence parameters, covariate

coefficients, and dynamic & total effects. Furthermore, mismodeled spatiotemporal dependence

also compromises standard diagnostic tests used to guide model specification. To be specific,

omission or inadequate address of either spatial or temporal dependence leads to biases in the

estimated coefficients on both temporal and spatial lags, induces biases in the coefficients on other

covariates, X, and thereby biased estimates of spatiotemporal effects, both of the spatiotemporal

dynamic responses of outcomes, y, over time and across spatial units, and of the instantaneous

and cumulative outcome responses to any hypothetical/counterfactual.

Most importantly, because of these intertwined biases from inadequate address of either spatial

or temporal dependence, crucial political-science substance is at stake in modeling well both the

temporal and spatial processes inherent in TSCS data. Consider, for instance, the well-known ‘de-

velopment & democracy’ (Lipset 1959) and ‘democratic dominoes’ (Starr 1991) propositions. We

know that more-developed political-economies are more likely to become and to be democracies,

and far more likely to remain democracies: temporal dependence (Przeworski et al. 2000; Robin-

son 2006). We also know that democracy clusters spatially, specifically geographically: “Since

1815, the probability that a randomly chosen nation would be a democracy is about 0.75 if a

majority of its neighbors are democracies, but only 0.14 if a majority of its neighbors are non-

democracies" (Gleditsch & Ward 2006): spatial dependence. In identifying (testing) or estimating

spatial and temporal dependence, however, we immediately confront two broad challenges. First

is the source of the dependence: i.e., spatiotemporal dependence may arise in the outcome, y (an

autoregressive (in y) process), and/or in the observed covariates (exogenous explanators), x (a

distributed-lag process), and/or in the unobserved/unmodeled residual, ε (an error-dependence

process). In this substantive example, regarding temporal dependence, democracies may persist
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because accumulating experience with democracy reinforces its institutionalization (autoregressive

in y), because economic development causes democracy contemporaneously and economic devel-

opment persists (xt−→yt, with x serially correlated) or because a past history of development

contributes to a democratic present (xt−s−→yt, a distributed lag in x), and/or because some un-

observed/unmodeled covariate of democracy, culture perhaps, persists or has persistent effect on

democracy (serial dependence in ε, autoregressive or distributed lag (moving average)). Similarly,

the observed spatial association or clustering of democracy may arise simply because economic de-

velopment causes democracy (xi−→yi) and development clusters spatially: clustering in observed

covariates ; because developed or underdeveloped neighbors spur/stabilize or impede/destabilize

democracy at home (spatial-lag x, xj 6=i−→yi, a spatial distributed-lag process): spillovers or exter-

nalities from observed covariates; because of clustering through unobserved/unmodeled external

or foreign factors: clustered unobservables or spatially correlated errors ;8 and/or because foreign

democracy directly influences domestic democracy (yj 6=i←→yi, a spatially autoregressive process):

contagion or interdependence. In this last case, democracy itself is contagious; democracies in some

units cause democracy in others, perhaps by demonstration effects (aspirational for pro-democracy

forces and/or of costs to democracy-resisting forces, for instance) or by direct influences, e.g. of

policy, from (non)democracies j on (non)democracy i.

Secondly, as we elaborate and emphasize below, distinguishing and estimating well both di-

mensions of dependence, spatial and temporal, is likewise essential to obtaining creditable tests

and good estimates of the causal, spatiotemporally dynamic, and cumulative (steady-state) effects

of substantive-theoretical interest.9 Valid tests of whether and good estimates of how develop-

ment affects democracy, to continue our example, will require proper specification of both spatial

and temporal dependence processes.10 This is because, as we have shown elsewhere (Franzese &
8Conceptually, spatial dependence in unobservables or errors may arise from clustering, spillovers, &/or conta-

gion, but the specific modality of unobserved dynamics in unobserved factors is not easily discerned empirically.
9The order of the dependencies, i.e., the number of temporal or spatial lags, is also important but not a focus

here. Time periodization of most TSCS data-analyses in political science is annual, and at that coarse temporal
granularity first-order time-lags appear to suffice in most applications. Multiple spatial-lag models bring greater
complications, which we do not discuss here (see Hays et al. 2010).

10For applied purposes, proper here means sufficiently well as to render remaining unaccounted spatiotemporal
dependence unimportant among the inevitable modeling imperfections.
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Hays 2007, 2008a,b; Cook et al. 2020), these different forms of spatiotemporal dependence imply

substantively importantly different effects, meaning how outcomes, y, respond to hypothetical or

counterfactual ‘shocks’, dx, i.e. we define effect ≡ dy
dx
. Temporal or spatial dependence in outcomes

y are autoregressive processes, which imply geometrically (exponentially) fading or accumulating

dynamics and (long-run) steady-state multipliers: a democratization event in one country at some

time propagates forward in time infinitely, fading geometrically, and reverberates around through

neighboring countries, and then neighbors of neighbors (including bouncing back to the original

country: you are your neighbors’ neighbor), and neighbors of neighbors’ neighbors (which include

the original neighbors), and so on infinitely (again, fading geometrically). With spatial spillovers

or temporal ‘spill-forwards’ in x, in contrast, i.e. with spatiotemporal distributed-lag processes,

some increase in economic development in one country-time, spills democratizing influence for-

ward in time however many periods there are time lags and disappears beyond that, and spills

over into whatever neighboring countries, and ends there, without the autoregressive reverberation

further forward in time and outward & back into neighbors’ neighbors and so on. Autoregressive

processes involve geometrically propagating dynamics and long-run temporal &/or steady-state

spatial multiplier effects; distributed-lag processes have merely discretely decaying dynamics and

effects, with no multipliers; and error-dependence processes, for their part, are orthogonal, i.e.

unrelated, to x and so to effects. With spatiotemporal dependence in errors, effects of x on y are

spatiotemporally static, and equal simply the coefficient on x.

Our suggested Spatio-Temporal Autoregressive Distributed Lag (STADL) model, which fol-

lows on and builds from Elhorst (2001, 2014), spans these dependence source and dimension

possibilities—i.e., the STADL nests within it most common spatial, temporal, and spatiotemporal

specifications—enabling proper address of both spatial and temporal dependence and therefore

valid tests and good estimates of spatiotemporal dynamic effects, making the STADL an effective

starting point for researchers’ TSCS data-analyses.
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2 Spatial, Temporal, and Spatiotemporal Dependence

The issues of spatial and temporal dependence separately have received considerable atten-

tion elsewhere, including by political scientists (e.g., Box-Steffensmeier et al. 2014, Franzese &

Hays 2007, 2008a), so readers likely have some familiarity with both the statistical importance

and the practical challenges of accounting for dependence in political-science TSCS data. These

previous considerations, however, have generally confined attention to a single dimension of de-

pendence, time or space, by considering only time-serial or cross-sectional contexts or, in TSCS

contexts, by assuming independence on the non-focal dimension or that its dependence adequately

addressed otherwise, so as to focus exclusively on temporal or spatial dependence (e.g., Beck &

Katz 1995, Franzese & Hays 2007). With TSCS data, though, researchers not only inherit the

challenges of both spatial (cross-unit) and temporal (over-time) dependence but also uniquely con-

front spatiotemporal (cross-unit, over-time) dependence as well. This section briefly reviews the

conventional separate understandings of spatial and temporal dependence, focusing primarily on

source (as opposed to order : see note 9) considerations. We then demonstrate that, in TSCS data,

spatial and temporal (and spatiotemporal) dependence are necessarily intertwined and therefore

should be considered jointly simultaneously, before offering in the next section the STADL as a

practical & effective strategy for doing so.

2.1 Spatial Dependence

Cross-sectional or spatial dependence—meaning nearby units have more (or less) similar re-

alizations than expected by chance alone—will be present whenever multiple units are observed

in a non-random sample.11 If near is defined geographically, for instance, mappings of variables

with positive spatial dependence invariably exhibit geospatial clustering of so-called hotspots or

coldspots. Such spatial dependence can arise because units share common traits or exposure

(i.e., clustering in observed covariates or exogenous spillovers: development clusters or foreign
11Indeed, even in random samples, e.g. scientific surveys or randomized samples of experimental subjects, the

ubiquity of social networks suggest perfectly independent observations are unlikely.
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development affects domestic democracy), because the units influence one another (i.e., inter-

dependence/contagion of democracy), &/or due to clustering, spillovers, or interdependence in

unobservables (culture, perhaps).12 Moreover, whether by clustering, spillovers, or contagion,

we can expect spatial (cross-unit) dependence to manifest across the entire substantive range of

political science—intergovernmental diffusion of policies and institutions among nations or sub-

national jurisdictions (e.g., Graham et al. 2013); international diffusion of democracy (e.g., Starr

1991); parties’, representatives’, and citizens’ votes and other behaviors in legislatures and elec-

tions (e.g., Kirkland 2011; Tam Cho & Fowler 2010; Baybeck & Huckfeldt 2002); interdependence

in globalization studies (e.g., Simmons & Elkins 2004) and contextual/neighborhood effects in mi-

crobehavioral research (e.g., Huckfeldt & Sprague 1987); wars, coups, riots, civil wars, revolutions,

terrorism (e.g., Buhaug & Gleditsch 2008)—and many more. Indeed, interdependence across units

is a defining characteristic of the social sciences, where its study is prominent also in geography

& environmental sciences; in regional, urban, & real-estate economics; in medicine, public health,

& epidemiology; in education, psychology, sociology, & social-psychology; and beyond.

Spatial dependence, in short, is everywhere, empirically and substantively/theoretically. Ap-

plied researchers almost always, perhaps unknowingly, account for some clustering in regression

models simply through the inclusion of exogenous covariates, which also cluster ubiquitously. We

call this clustering in observed covariates and note that its corresponding model is nonspatial

(NON): yit=xitβββ+εit.13 Insofar as these spatially clustered x are omitted or are inadequate to

account the full spatial dependence in the dependent variable, the remainder will manifest as

spatially correlated errors, as anything omitted from the systematic component (mean function)

is shunted to the residual component. As shown elsewhere (Franzese & Hays 2007, 2008a), left

unaddressed, such spatial dependence risks inefficiency at best and typically bias as well.

Often, though, additional sources of spatial correlation—correlated unobservables, exogenous
12We sidestep here issues of spatial-unit aggregation, i.e. the MAUP: Modifiable Areal Unit Problem (Fothering-

ham & Wong 1991), which are similar to, but more complex than, the more-familiar issue of temporal granular-
ity/aggregation affecting time-serial dependence (Stram &Wei 1986; Freeman 1989). Likewise, we do not emphasize
crucial specification issues regarding W, the matrix of relative connectivity or distance between the units, i.e. the
network, by which spatial association manifests (see, e.g., Franzese & Hays 2008b; Neumayer & Plümper 2016).

13We assume linear-additive separable mean and stochastic component here solely for ease of exposition.
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spillovers, &/or outcome interdependence—are also present. When other manifest sources are

omitted, including spatially correlated x regressors not only fails to fully address spatial depen-

dence, but can actually further compromise our understanding of the data-generating process.

These included x have power against the unmodeled spatial processes, which biases their coeffi-

cient estimates following the familiar omitted-variable bias (OVB) formula and logic (Franzese &

Hays 2007, 2008a). Accordingly, political scientists have increasingly sought to model these other

spatial processes directly also, using the workhorse models of spatial econometrics—spatial-error

model (SEM), spatially-lagged x model (SLX), and spatial-lag (of y) model (SAR)—each of which

assumes and reflects a single additional source of cross-unit dependence—correlated unobservables,

exogenous spillovers, and outcome interdependence, respectively—via an additional modeling de-

vice, the spatial lag, to bring ‘neighboring’ values of εεε, x, or y into the model. A brief summary of

these models will help establish concepts and notation which may be unfamiliar to some readers.

Each of these spatial models, and indeed any spatial analysis whatsoever, even merely measur-

ing & testing spatial correlation, must begin with specifying the connectivity (or spatial-weights)

matrix, W, a N×N matrix with elements wij reflecting the relative connection, tie, distance, or

potential influence, from unit j to unit i. This (pre-)specification of W is primary to any spatial

analysis (Neumayer & Plümper 2016), being essential for preliminary descriptives and diagnos-

tics, model specification and estimation, and effects calculation. Any relational data (e.g., trade,

alliances, joint membership) can undergird W, and of course theory and substance should always

be paramount in this indispensable foundational step of spatial analysis. Absent strong theory,

though, researchers often use geographic proximity since geography correlates with so many other

potential bases for interconnection: economic interchange, cultural and linguistic similarities, and

flows of people and information, e.g., are all greater across borders than between more-distant

states.14 Different specifications of W allow researchers to study diverse empirical patterns and

alternative substantive/theoretical bases of cross-unit relations.15 The researcher defines the rel-
14Given uncertainty over the relevant ties/network, a Bayesian Model-Averaging approach to estimating W

simultaneously with a model of its effect seems promising (Juhl 2020).
15While misspecified W will, of course, reduce the accuracy and power of spatial-association tests and measure-

ments and spatial-model estimates, research has shown that the consequences of errors in W are often less severe
than feared (LeSage & Pace 2014) and certainly better than ignoring spatial dependence outright (Betz et al. 2020).
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evant concept of space and metric of distance for her application—again, geographic distance or

contiguity is often convenient and powerful default, and will be ours here—and then usually nor-

malizes this W in some manner to ease interpretation, reduce dependence on scale factors, ensure

the invertibility of the spatial multiplier, etc. The most-common row normalization, dividing each

wij by row-sum
∑

j wij, produces spatial lags equal to weighted-averages of x (as defined by W)

and thereby facilitates direct interpretation of the lag coefficient among other conveniences.16,17

With W specified and normalized, it then pre-multiplies a vector—ε, x, or y—to produce so-called

spatial lags—Wε, Wx, or Wy, which are weighted (by W) averages of (W-defined) neighbors’

errors, covariates, or outcomes—for use in preliminary measures & tests of spatial correlation (e.g.,

Moran’s I), in specification & estimation of spatial models, and in interpretation of spatial effects.

Quickly reviewing the baseline spatial models: the spatial error model (SEM) assumes spa-

tially autocorrelated residuals, which are orthogonal to the included regressors. As mentioned,

a spatial-error process can arise from clustering, spillovers, or interdependence in unobserved or

unmodeled, but orthogonal, factors, resulting in a non-spherical error variance-covariance matrix

and consequently inefficient OLS estimators. In the democracy-development example, spatial er-

ror dependence may occur due to unmodeled country-specific determinants of democracy (e.g.,

cultural/historical legacies (Acemooglu et al. 2008)) or from heterogeneity across countries in the

effect of development on democracy (i.e., spatial heterogeneity). Formally, the SEM model is:18

y = xβ + u, with u = λWu + ε (1)

with W the N×N connectivity matrix with elements wij reflecting the relative connectivity from

j to i, and λ the strength of spatial autocorrelation propagated in this predetermined pattern, W.

Next, cross-unit spillovers or externalities in exogenous observed factors (regressors, x) can

also produce spatial dependence in outcomes. In our democracy-development example, exogenous
16Some other common normalizations include spectral or min-max, which have other convenient properties.
17Neumayer & Plümper (2016) further discuss W specification and normalization issues, the most important

being that the choice of normalization, or not to normalize equally as well, affects the substantive interpretation
of the lag variable and coefficient.

18This SEM assumes spatial-autoregressive errors; moving-average (spillover) or spatial-hierarchical (clustered)
versions also exist. The distinctions are not easily discerned empirically, being unobserved processes in unobserved
factors. Fortunately, the distinctions are also immaterial to effects as we’ve defined them here.
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spillovers occur if economic development in a country influences, not only its own democracy,

but that of neighboring countries as well, perhaps via development spurring the emergence of

transnational advocacy networks as discussed in Keck et al. (1998). Alternatively, conflict or

public health in neighboring countries, xj, may influence probabilities of democratic emergence or

stability at home, yi. The spatial-lag x or SLX model captures exogenous spillovers like these:

y = xβ + Wxθ + εεε. (2)

Here, the spatial lag of regressor, Wx, introduces neighboring (as per W) values of xj 6=i into the

model for yi.19 With x exogenous, Wx is too, so SLX models can be estimated efficiently by OLS,

with θ̂ giving the magnitude of these exogenous spatial spillovers. Halleck Vega & Elhorst (2015)

and, more recently for political science, Wimpy et al. (2021) offer further discussions of SLX.

Finally, where theory &/or substance indicate interdependence or contagion in outcomes, the

increasingly widely-used SAR model is called for:

y = ρWy + xβ + εεε. (3)

This SAR (spatial-lag y) model may be most familiar to readers, as it has quickly become the

dominant model of applied spatial work in political science (and elsewhere). As previously noted,

autoregressive processes like SAR are appropriate for interdependent/contagious processes. In

the democracy-development example, Starr 1991’s “Democratic Dominoes” notion implicates such

spatial autoregression most directly: democracy is contagious; neighboring democracies cause

democracy at home. Mechanisms for such causal contagion could be suasion, i.e. diplomacy and

foreign policies, or demonstration effects: being surrounded by democracies could reveal much to

domestic actors about the workings, prerequisites, benefits and costs of democracy (Elkink 2011).

The key substantive differences of spatial-autoregressive compared to the other processes

are the aforementioned exponentially reverberating dynamic and steady-state effects. The key

methodological difference is that the spatial-lag regressor, Wy, being other units’ outcomes, i.e.

the endogenous dependent variable, is an endogenous regressor. Thus, consistent estimation of
19To simplify exposition, we use a single covariate and lag; the generalization to multiple covariates and lags is

straightforward. Wimpy et al. (2021) discuss several advantages of this general SLX model.
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SARmodels requires instrumental variables (spatial two-stage least-squares or generalized method-

of-moments) or systems maximum likelihood (spatial-ML). We suspect SAR’s popularity among

these single-source spatial models owes, one, to its substantive resonance in political science,

where outcomes are often social and/or strategic behaviors wherein some units’ outcomes/choices

directly influencing others’ outcomes/choices is endemic; and, two, to how the other two single-

source models imply that clustering or spillovers occur only in observed/modeled or only in unob-

served/unmodeled components, which seems generally less plausible than that dependence would

operate in both as in SAR. (SAR does impose equal, autoregressive processes in observed &

unobserved components, though, which may seem restrictive.)

In any case, these single-source models can be combined in whatever pairs20 may be substan-

tively/theoretically implicated. If, e.g., one expected spillovers in observed covariates (SLX) and

in unobserved features (SEM), but not necessarily to the same extent or autoregressively as SAR

implies, this SLX+SEM combination gives the so-called Spatial Durbin Errror Model (SDEM):

y = xβ + Wxθ + u, with u = λWu + ε. (4)

These multi-source models are advantageous in that they allow researchers to simultaneously

account for alternative spatial processes (here exogenous spatial spillovers and spatial error au-

tocorrelation). This is significant because spatial-model specifications often have power against

‘incorrect’ alternative spatial processes: SAR, SLX, or SEM lag-coefficients or tests will ‘pick up’

unmodeled SLX, SEM, or SAR processes.21 As a consequence, modeling one source of spatial

dependence (e.g., SAR) while neglecting others (e.g., SEM) risks inaccurate (typically: inflated)

estimates of the included dependence parameter. As a consequence, researchers are advised to

condition on these potential alternative processes when performing diagnostic tests (Anselin et al.

1996a) or specifying their empirical models (Cook et al. 2020). Below we build on this, demon-

strating that in TSCS data not only do different spatial models have power against alternative

spatial processes, but alternative temporal processes as well. This motivates our suggested STADL
20Even the three-source model is estimable, albeit with great fragility, being identified by functional-form differ-

ences across the lag-y, x, ε processes (Elhorst 2014; Cook et al. 2020).
21Cook et al. (2015), Rüttenauer (2019), and Cook et al. (2020) explore the similarities and difference among

these alternative specifications in the purely spatial (cross-sectional) context.
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model, which combines multiple dependence sources across both spatial and temporal dimensions.

2.2 Temporal Dependence

Many readers may be more familiar with the time-series analogs to the spatial processes/models

just described, owing to discussions in Keele & Kelly (2006) and elsewhere, so we will be brief

here. As with space, temporal dependence or serial correlation may arise from four sources: yt

may correlate with yt−1 simply because exogenous covariates x correlate over time, because un-

observed/unmodeled factors ε exhibit serial correlation, because past values of xt−s have lagged

effects on current outcomes yt, &/or because past outcomes yt−s themselves continue to shape

current outcomes yt, i.e. outcomes are persistent, exhibit inertia. Also as with space, these alter-

native sources correspond to distinct substantive/theoretical processes and model specifications.

Analogous to the nonspatial model is the (identical) static model, yt=xtβ+εt, corresponding in

our substantive example to democracy exhibiting serial correlation simply because exogenous co-

variate development does. The SEM analog is the familiar serially correlated errors (SCE) model,

yt=xtβ+ut, with ut=δut−1+εt,22 which reflects persistence in unobserved/unmodeled factors, such

as cultural-historical legacies, perhaps. The finite distributed-lag (FDL) model, yt=xtβ+xt−1γ+εt,

corresponds to the SLX model; substantively: past realizations of development directly affect

present democracy, i.e. effects of x occur with a lag. Perhaps development spurs long-term

sociocultural changes whose impact materializes later. Finally, in the temporal autoregressive

(in y) process, i.e. the lagged-dependent-variable (LDV) model, yt=φyt−1+xtβ+εt, past democ-

racy directly influences present democracy, i.e. a persistent or inertial process, which in this

substantive case may reflect democratic institutionalization wherein experience with democracy

itself yields increasingly entrenched or consolidated democracy (Alexander 2001; Diamond 1994).

Again in parallel with the spatial context, effects (of x on y) in the static or SCE model are

static: dyt
dxt

=β and dys
dxt

=0 ∀ s 6=t; whereas effects are dynamic in the FDL and LDV models, decay-

ing discretely and persisting only to the lag-length order in FDL models but persisting infinitely
22As before, we continue here with first-order, i.e. one-period, lags for expositional simplicity (see also note 9).
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with exponential/geometric decay, implying long-run steady-state (LRSS) multipliers, 1
1−φ , and

cumulative LRSS effects, 1
1−φ · dx · β, in the autoregressive LDV.23

2.3 Spatiotemporal Dependence

With readers (re)familiarized with the base temporal and spatial dependence models/processes,

we turn next to illustrating how these spatial and temporal dependencies are necessarily related.

Start with the simple static/nonspatial linear-regression model, now indexed by unit i and time t:

yit = β0 + β1xit + uit, (5)

except here assume that some residual dependence may result from omitted yi,t−1, yj,t’s,24 or both:

uit = φyyi,t−1 + ρy

N∑
n=1

wijyj 6=i,t + εit, with εit ∼ N(0, σ2). (6)

Furthermore, let x be stochastic, exogenous, and likewise follow its own spatiotemporal process:

xit = φxxi,t−1 + ρx

N∑
n=1

wijxj 6=i,t + eit, with eit ∼ N(0, σ2). (7)

Given all other standard regression assumptions, we now walk through the relationship between

spatial and temporal dependence (also depicted visually in Figures 2-5).

x y
β

Figure 2: Static Relationship

First, obviously, restricting φy=0 and ρy=0 produces i.i.d. residuals uit, so the nonspatial,

static equation (5) depicted in Figure 2 fully accurately models the relationship of x to y. Relaxing

one restriction, say φy 6=0, but keeping the other, ρy=0, induces time-serial dependence in the

residuals u, which biases β̂ in the static model if φx 6=0. This situation, depicted in Figure 3, is

textbook omitted-variable bias (OVB)—with Cov(x, yt−1) increasing in ρx—and is easily remedied

by including time-lagged y (LDV model) as commonly done. Similarly, freeing ρy 6=0 while keeping

φy=0 also threatens OVB in the static model. Again, OVB arises if x has dependence in the same
23Also analogously (see note 25), the question of the “effect of x on y” in temporally dynamic contexts requires

more precise statement of both the hypothetical/counterfactual, dx, and the effect, dy, refining to specify dx when,
in what period(s) is x ‘shocked’, and dy when, in what period(s) do we want to know the response of y thereto?

24∑N
n=1 wijyj 6=i,t is the scalar representation of the spatial lag presented above in matrix form, i.e. Wy.
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dimension as y, here if ρx 6=0 as depicted in Figure 4, so that Cov(x, yj) 6=0, and the simple remedy,

increasingly common in applied work, adds spatial-lag y to form the spatially dynamic SAR model.

xt yt

xt−1 yt−1
β

β

φx φy

Figure 3: Time-serial Dependence

xi yi

xj yj
β

β
ρx ρy

Figure 4: Cross-Sectional Dependence

This is all familiar: with single-dimensional dependence, purely cross-sectional spatial or time-

serial modeling suffices. However, if both φy 6=0 and ρy 6=0 as in Figure 5, i.e. with both temporal and

spatial dependence present, researchers must model dependence in both dimensions adequately.

Omitting/mismodeling spatial dynamics, e.g., will leave residual time-serial correlation because

the omitted/mismodeled spatial-lag yjt is serially correlated to yj,t−1 which in turn exhibits that

same omitted/mismodeled spatial relation to the included time-lag yi,t−1. Symmetrically, failing

to model temporal dynamics adequately will leave spatial autocorrelation, as the missed aspect of

the past, yi,t−1, has the same spatial relation to yj,t−1 as does yit to the included spatial-lag, yjt.

We can prove this, that spatiotemporal dependence causes bias (OVB) when only one of

spatial or temporal dependence is modeled, using the first-order spatiotemporal-lag model 20 (also

depicted in Figure 5). If the truth is yt=βxt+ρWyt+φyt−1+εεεt, but one estimates SAR (omitting

φyt−1) or LDV (omitting ρWyt), then OVB arises if ρφCov(Wyt,yt−1)6=0. This covariance is

necessarily nonzero because spatial dependence implies Wyt←→yt and temporal dependence
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xi,t yi,t

xi,t−1 yi,t−1

xj,t yj,t

xj,t−1 yj,t−1
β

β

β

β

φx

φx

φy

φy

ρx

ρx

ρy

ρy

Figure 5: Space-Time Dependence

implies yt−1−→yt, so yt−1−→yt←→Wyt and Cov(Wyt,yt−1)=Cov(f(yt),yt−1) 6=0. To see the

sign and magnitude of these OVB, consider Achen (2000)’s derivation of the biases in φ̂y and β̂ in

the LDV model when additional, unmodeled dynamics φe remain in the disturbance term:

plim φ̂y = φy +

[
φeσ

2

(1− φeφy)s2

]
, (8)

plim β̂ =

[
1− φxg

1− φxφy

]
β, (9)

where s2=σ2
Yt−1,X

and g= plim(φ̂y)−φy (see also Keele & Kelly 2006). Achen (2000) notes that

any φe>0 inflates φ̂y and attenuates β̂ estimates. Notice, as just proven, that any unmodeled spa-

tial dependence necessarily produces precisely these conditions, as yi,t=φyyi,t−1+xi,tβ+ui,t =⇒

yj,t=φyyj,t−1+xj,tβ+uj,t, therefore any ρy 6=0 produces φe>0 and ‘Achen’s LDV-bias’. Following

now the simple OVB logic: omission or underestimation of ρy induces primarily overestimation

(inflation bias) of φy, being the coefficient on the included regressor most related to the omit-

ted/mismeasured Wy, and that in turn induces compensatory deflation bias of βx. Thus, even if

Stimson (1985)’s ‘inherent’ (temporal) autocorrelation is accurately modeled, misspecification in

the spatial dynamics sets off a chain of biases: the primary attenuation (underestimation or 0 if

omitted) of ρy, induces overestimation (inflation bias) of φy, which induces attenuation (deflation,

underestimation) of βx, and of course any related causal-inference tests are biased thereby as well.
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As a result of all these parameter-estimate biases, the dynamic and total causal effects of x on y

are misestimated too: initial ’impulses’ (β) from x to y underestimated, spatiotemporal dynamics

misconstrued to ‘too-persistent’ if spatial dependence omitted or relatively mismodeled or ‘too-

contagious’ if temporal dependence omitted (rare) or relatively mismodeled (more common), and

so long-run steady-state effect estimates will be biased also.

Given that inadequate address of spatiotemporal dependence will bias inferential tests and

estimates of coefficients, dynamics, and steady-state effects, even researchers for whom these dy-

namics and dependencies are nuisance cannot neglect their careful attention. Furthermore, these

biases induced by relative neglect of spatial or, less commonly, temporal dependence are of central

substantive-theoretical importance as well. In our development-and-democracy terms, relative in-

adequacy in addressing spatial dependence—inadequate account in the model that, and by what

process, democracy clusters—yields estimates that imply inaccurately greater temporal persistence

of democracy, e.g. an overestimate of democratic-institutionalization and -consolidation effects. If

democratic persistence derives from a temporally autoregressive process as such arguments imply,

this overestimated temporal dependence will mean slower geometric decay of, and larger long-

run-steady-state multipliers on, other covariates’ effects on democracy, which covariates, such as

development, will in turn have smaller immediate-impact estimates, i.e., smaller β̂x. Moreover,

along with these misestimated dynamic and steady-state effects, the biased β̂x mean that hypoth-

esis tests (inferences) about the (causal) effects of x on y will be biased as well, likely increasing

Type II error (lack of power, failure to reject when should).25 These biases arise because, in a

TSCS analysis with temporal dependence modeled but spatial dependence excluded, for instance,

what among the included factors looks most like the omitted ‘today’s democracy abroad’—say

German democracy today (yj,t) as omitted explanator of French democracy today (yi,t)—is ‘yes-

terday’s democracy at home’, i.e. French democracy yesterday (time-lagged yi,t−1). Intuitively, as

shown mathematically and diagrammatically above, because, and insofar as, ‘Germany yesterday’

relates to ‘France yesterday’—spatial dependence is present—and ‘Germany yesterday’ relates to
25Notice also that, in spatiotemporally autoregressive contexts, the usual statement of the causal estimand, ‘the

effect of x on y’ is itself underspecified, because, for the question to be fully enunciated given spatiotemporal
interdependence, we need to ask about ‘the effect of x when and where on y when and where’.

16



‘Germany today’—temporal dependence is also present, i.e., with both spatial interdependence

and temporal dependence present, the omitted ‘Germany today’ relates to the included ‘France

yesterday’. Of course, all of the analogous holds also in the other direction, regarding the (rarer

in applied work) omission or relatively inadequate address of temporal dependence.26

Applied researchers also commonly deploy unit or period fixed-effects to ‘account for’ spa-

tial or temporal dependence. Unit or period dummies (or random effects) do address particular

forms of spatiotemporal dependence (Elhorst 2014), but often fail to fully characterize the pat-

terns of spatiotemporal dependence found in TSCS data. Unit indicators absorb long-run, fixed

or constant, spatial clustering in outcomes, plus any other time-invariant unobserved/unmodeled

unit-specific factors. However, these captured ‘effects’ are additive, mean-shifts, time-invariant

clustering, and not autoregressive or distributed-lag in form. Unit-specific effects also cannot

account time-varying unobserved/unmodeled effects (such as evolving spatially clustered sociocul-

tural or institutional factors). Analogously, period fixed-effects/time-dummies account for ‘global’

shocks: spatially-invariant, uniform common across all units, fixed, additive mean-shifts, and so

cannot account autoregressive or distributed-lag processes, or unit or regional variation in clus-

tered additive shocks (such as influences diffusing among, or additive unobserved characteristics

of, members of regional organizations).

Finally, given the substantively and statistically critical importance of adequate address of spa-

tiotemporal dependence, researchers will want to conduct appropriate and effective specification

testing.27 In principle, one can conduct specification searches from ‘specific-to-general’, starting

with sparse spatiotemporal models and testing, using Lagrange-Multiplier (LM) tests, whether

to add spatiotemporal-lag terms, or ‘general-to-specific’, starting with a more-general specifica-

tion and testing, by Wald (t or F ) or loss-of-fit (∆R2 or likelihood-ratio) tests, whether specific
26In practice, given the typically great strength of time-lags as predictors compared to other regressors, omitted

spatial factors’ relation to included temporal factors is usually by-far the strongest of the OVB formula’s partial
correlations, meaning inadequate address of spatial dependence induces largest inflationary biases on the temporal-
dependence parameters and secondary induced biases in other covariate coefficients. Conversely, included (better
specified) spatial dependence being typically considerably weaker than omitted (more-poorly specified) temporal
dependence, and the temporal persistence of other exogenous covariates being likewise stronger than their spatial
association, the OVB biases tend to be more-evenly distributed across included parameters.

27And sensitivity analyses (see, e.g., Neumayer & Plümper 2017).
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spatiotemporal-lag terms may safely be omitted (Hendry 1995). In this present context, though,

we know LM tests of underspecified models will ‘have power against incorrect alternatives’ (Anselin

1988): e.g., rejecting LDV in favor of adding SAR when the actual missing spatial process is SEM or

SLX, or rejecting SAR in favor of adding SEM when it is the temporal-dependence process that is

missing/poorly specified.28 Instead, we suggest the (first-order) Spatio-Temporal Autoregressive-

Distributed-Lag (STADL) model, as a convenient and effective more-general starting point (i.e.,

adequately general and encompassing for most TSCS applications in political science).

In summary, as we will further demonstrate by simulation and in applications re-analyses below,

TSCS analyses of, e.g., the democracy-and-development proposition that relatively neglect spatial

(temporal) dependence will estimate greater temporal persistence (spatial dependence) than ac-

tually present, and correspondingly misestimate spatiotemporal dynamic and cumulative effects,

and so yield biased tests and erroneous inferences regarding substantive-theoretical propositions.

The more-general STADL model offers effective alternative for applied TSCS analyses.

3 The STADL Model

The workhorse cross-sectional and time-serial models from spatial and time-series econometrics

were introduced above. To review compactly, the baseline spatial-econometric models correspond

to the different potential sources for observed spatial association: nonspatial models (NON) for

spatially clustered exogenous covariates (including fixed-effects), spatial error (SEM) for clustering

in unobservables, spatially lagged covariates (SLX) for exogenous spillovers/externalities, and
28LM tests can be adjusted (using cross-partial gradients of the fuller-specification likelihood) to prevent rejection

against specific incorrect alternatives, but these ‘robust LM tests’ (Anselin et al. 1996b) as yet exist for very few
combinations of spatiotemporal processes.
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spatial-lag/spatial-autoregressive (SAR) models for endogenous contagion/interdependence:29

Clustered Covariates = NON : yt = xtβ + εεεt, with xt spatially correlated (10)

Clustered Unobservables = SEM : yt = xtβ + ut, with ut = λWut + εεεt (11)

Spillovers/Externalities = SLX : yt = xtβ + Wxtθ + εεεt (12)

Interdependence/Contagion = SAR : yt = ρWyt + xtβ + εεεt (13)

Notice, crucially, that ‘the effect of x’ differs importantly across these models. With clustered

exogenous covariates (NON ), dyit
dxit

=β (and dyjs
dxit

=0 ∀ j 6=i, s6=t). Likewise with spatial dependence

confined to the orthogonal unobserved component (SEM ), the effect of x on y is merely dyit
dxit

=β

(and dyjs
dxit

=0 ∀ j 6=i, s6=t). In our substantive example, in both of these models/sources/processes:

‘What happens in France stays in France’ with respect to the effect of x on y. With exogenous

externalities (SLX ), i.e. with the spatial distributed-lag model/source/process, ‘What happens in

France spills over into Germany (and France’s other first-order neighbors according to W),’ and

the story ends there: dy=W · dxt · β. Notice that both the hypothetical/counterfactual dxt and

the effect, dyt are vectors, not scalars; with spatial spillovers, the effect of x differs depending on

which units are ‘shocked’ and these effects manifest not only in yi of the shocked unit/s but also

in its/their (first-order) neighbors as defined by W.30 In the spatial-autoregressive model that

corresponds to interdependent/contagious contexts, ‘what happens in France influences Germany

& France’s other neighbors, which in turn influence their neighbors, including France, which in

turn influence those neighbors’ neighbors’ neighbors, including Germany again, and so on,’ with

the effect of any dxt on yt reverberating outward and back thusly in an exponentiating series:

dyt = ( I︸︷︷︸
self

+ ρW︸︷︷︸
neighbors

+ ρ2W2︸ ︷︷ ︸
neighbors’ neighbors

+ ρ3W3︸ ︷︷ ︸
neighs’ neighs’ neighs

+ ρ4W4︸ ︷︷ ︸
neighbors4

+ . . .) · dxt · β

=

(
∞∑
m=0

ρmWm

)
· dxt · β = (I− ρW)−1︸ ︷︷ ︸

spatial multiplier

· dxt︸︷︷︸
shock

· β︸︷︷︸
impulse

(14)

Again, insofar as researchers misspecify (or omit) the spatial-dependence process, say Wy, ρ is

underestimated (ρ=0 if omitted), and the OVB formula and intuition implies inflated βββ estimates,
29The vectors in these equations are N×1; the matrix W is N×N .
30Whitten et al. (2021) discuss how higher-order SLX models, i.e. powers of W, capture neighbor-of-neighbor

effects, etc.
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with those OVBs distributed proportionately to the x’s partial association with the misspeci-

fied/omitted Wy, meaning larger induced biases will accrue to the x’s with spatial clustering

more similar to that implied by W.

The time-series analogs, also first-order, are compactly expressed using the lag operator, Lsyt ≡

yt−s, as the serially correlated errors (SCE), finite distributed lag (FDL), and lagged dependent

variable (LDV) models, along with the static model (StM) with serially correlated exogenous

covariates (including time-period fixed-effects, and identically parallel to the nonspatial model):31

StM : yt = xtβ + ut, with xt serially correlated (15)

SCE : yt = xtβ + ut, with ut = δLut + εεεt (16)

FDL : yt = xtβ + Lxtγ + εεεt (17)

LDV : yt = φLyt + xtβ + εεεt (18)

Notice again the dynamics, or lack thereof, of the effects of x on y in these time-series models.

In the static and serially correlated errors models, the effect of xt is confined to yt, there are

no temporal dynamics: dyt
dxt

=β and dys
dxt

=0 ∀ s 6=t. In distributed-lag or autoregressive processes,

contrarily, and again in parallel to the spatial cases, we need first specify dx when and expand our

question about the effect on y when. In the distributed-lag case, the effects of x simply spill forward

the number of periods equal to the lag-order, p, dyt=L · dxt · β, and are completely dissipated

beyond that: dyt+s

dxt
=0 ∀ s>p. Temporally autoregressive processes, finally, imply exponentiating

(geometric) decay for ‘temporary shocks’, or decaying accumulation for ‘permanent shocks’, of

‘long-run steady-state’ effects going forward infinitely in time, like so:

dy∞︸︷︷︸
LRSS

response

= βdx︸︷︷︸
period 0

+ ρβdx︸ ︷︷ ︸
period 1

+ ρ2βdx︸ ︷︷ ︸
period 2

+ ρ3βdx︸ ︷︷ ︸
period 3

+...=
∞∑
s=0

ρsβdx︸ ︷︷ ︸
if 0<ρ<1, ⇒

=

(
1

1− ρ

)
︸ ︷︷ ︸
LR multiplier

× β︸︷︷︸
impulse

× dx︸︷︷︸
perm.
shock

(19)

It can be intuited from these differing expressions of the ‘(causal) effects of x on y’ implied

by the range of possible spatial and temporal processes that omissions or misspecifications of

either temporal or spatial dependence, given that they will induce biased estimates of the other
31The standard autoregressive distributed lag notation ADL(p, q) signifies time-lagged y of order p and time-

lagged x of order q, which given linear additivity suffices to give the lag-ε model as well.
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dependence-process’ parameters and covariates’ coefficients, will yield consequentially inaccurate

tests and estimates of the substantive (causal) effects of interest.

Given this critical substantive and statistical importance of allowing the estimation model to

express the spatiotemporal dependence inherent to TSCS data in the manner it manifests, we

suggest to combine these models in a Spatio-Temporal Autoregressive Distributed Lag (STADL)

model of order (sy0, sx0, se0; ty1, tx1, te1), where the s or t indicate spatial or temporal lag, the

y, x, e indicate which terms are lagged, and the superscript indicates the temporal order of the

lag, s0 for contemporaneous spatial lags, e.g.32 We recommend including in parentheses only the

terms actually used; the STADL(sy0, ty1), e.g., indicates the first-order spatiotemporal-lag model

that has become somewhat common most recently:

yt = ρWyt + φLyt + xtβ + εεεt, (20)

while the general version of the STADL(typ, txq, ter, syP , sxQ, sxR) is

Myt = Fxt + Aεεεt, (21a)

M ≡
(
I− φ1L− ...− φpLp − ρ0W − ...− ρP−1WP−1) , (21b)

F ≡
(
Iβ + Lγ1 + ...+ Lqγq + Wθ0 + ...+ WQ−1θQ−1

)
, (21c)

A ≡
(
I− δ1L− ...− δrLr − λ0W − ...− λR−1WR−1)−1 . (21d)

where M, F, A are the space-time filters of the outcome, predictors, and residuals, respectively.33

We express a first-order STADL conveniently for interpretation of spatiotemporal effects as:

y = φLy + ρWy + xβ + Lxγ + Wxθ + (I− δL− λW)−1εεε, (22a)

y = (I− φL− ρW)−1
(
xβ + Lxγ + Wxθ + (I− δL− λW)−1 εεε

)
. (22b)

where I,L, and W are NT×NT matrices; y,x,and εεε are NT×1 vectors; and L creates a one-period
32For multiple spatial-weights matrices, W, the s can be subscripted numerically or mnemonically, likewise in

cases where only some regressors X are lagged. Researchers writing for audiences more-familiar with ADL and/or
spatial notation, can use SAR+ADL(p,q) for instance.

33Although not a focus here, the STADL model can also easily incorporate recursive spatial processes (Anselin
2001) via time-lagged spatial lags (Drolc et al. 2019). Like yi,t−1 or Wx, time-lagged spatial-lags (TLSL) are pre-
determined in the system of equations, meaning they can be treated as exogenous regressors. For interpretation,
in the spatiotemporal dynamic effects, the L matrix requires modification (W placed around the ones on the
lower-block-minor diagonals).
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time-lag of variables it premultiplies.34 Differentiation of Equation 22 by x tracks responses over

time across all N units to some series of hypothetical/counterfactual shocks in N units over T

periods, dX, an NT×N matrix of shocks in each unit-period, (n, t):35

dY = (I− φL− ρW)−1(Iβ + Lγ + Wθ) · dX. (23)

dY gives in each column the response across all N units period-by-period to the ‘shock’ that unit

experiences given in dX. Recall that in spatiotemporal analyses, one must specified which units

are shocked (experience the hypothetical/counterfactual) and when—that’s the ‘treatment’—and,

correspondingly, the responses (‘effects’) will be in all units over all time-periods. In time-series,

one must specify dx when, and the default shocks are called temporary, a one-period shock—

dx=+1 in period t0 and dx=0 else—and permanent—dx=+1 in all periods. In spatial analysis,

one must specify dx where, and the analogous defaults are dx=+1 in one unit and dx=+1 in all

units. In space-time, the spatial and temporal defaults are combined to produce four; unit-i or all

units × 1-period or permanently. Notice the ambiguity surrounding comparable treatments and

effects in static versus in temporally, spatially, and spatiotemporally dynamic models/processes: in

static/nonspatial models, x’s effects incur exclusively in the unit-time shocked; in spatiotemporal

models, xit has effects also in units j 6=i, s6=t.36 Equation 23 gives the responses in dY column

by column to the shock given in that column of dX. So, dX for the own-unit shock in period t

is an N×N identity matrix (1 in diagonal elements (i, i), 0 else), and that N×N I occurs only

in the first block of dX for the temporary shock, and repeats for all periods for the permanent.

The all-units shock is a column of 1s, so every-unit/all-units shocked is an N×N matrix of all 1s,

again: only in the first N×N of dX for temporary, repeated for all periods for permanent.

Long-run steady-state (LRSS) responses in all N units to some permanent N×1 set of shocks,
34Spatiotemporal TSCS analyses order the data as all N units in period 1, all N units in period 2, ... L’s N×N

first block has all-0 elements, reflecting the omitted N first-period observations, all other elements are 0 too, except
the diagonal of the lower first block minor (the N×N blocks immediately below the N×N prime block diagonal),
those lower-block-minor diagonal elements are all 1.

35The dimensions in 23 are: dY,dX = NT×N , and I,L,W = NT×NT .
36In comparison to the static case, and to empirical realism, one-unit or one-period dX (radically) understates

the counterfactual because the spatiotemporal model rightly allocates the total impact of dX on dY across space
and time. From this view, all-unit permanent dX exaggerates a realistic dX, and static-model dx. Perhaps most
realistic (and what static-model estimates would be approximating with bias due to misspecifcation) would be dX
that followed the empirical spatiotemporal pattern.
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dx, is found by returning to (22a), setting yt−1=yt and xt−1=xt by definition of LRSS, to obtain:37

dy = (I− φI− ρW)−1(Iβ + Iγ + Wθ) · dx. (24)

Note the shock/hypothetical/counterfactual dx in unit(s) i and response/effect dy in all N units.

STADL models can be estimated via (concentrated) maximum likelihood, or Bayesian methods,

with likelihoods (posteriors) given in Elhorst (2001) (and LeSage & Pace 2009) and maximization

detailed in Anselin (1988).38 Even previous works that discuss TSCS data & spatiotemporal

models have neither discussed or derived analytically as above, nor evaluated through simulation

as next, the biases from omitting or mismodeling one of the dependence dimensions in estimates

of the other dependence parameters, the covariate coefficients, and the dynamic and total effects.

4 Monte Carlo Analysis of Dynamic TSCS Models

Our Monte Carlo Analyses demonstrate that the biases shown analytically above are of sub-

stantively important magnitudes in spatiotemporal TSCS data with properties designed to be

representative of common political-science application contexts. Given the combinatorically vast

number of STADL-model variations—62 first-order models alone—we focus on evaluating the two

currently most-widely used in political science: LDV and SAR, i.e., STADL(ty1) and STADL(sy0).

LDV and SAR model performance under various forms of temporal or spatial dependence is well

known, but less is known as-yet about the performance of either one-way model given spatiotem-

poral dependence in both dimensions. To explore SAR or LDV estimation performance given

dependence also in the unmodeled (or, implicitly, mismodeled) other dimension, we generate data
37The dimensions in 24 are dy,dx = N×1, and I,W = N×N .
38Similar to the 3-source spatial model (see note 20), the 3-source temporal and STADL models are identified

but frail when all 3 sources are included (i.e., the fully unrestricted STADL model). Given this, researchers will
want to use design (Gibbons & Overman 2012) or theory (Cook et al. 2020) to restrict some spatial and temporal
parameters ex ante. In Cook et al. (2020), we suggest that researchers should generally consider including terms
capturing spillovers in the mean component (either Wy or Wx) plus spatial error autocorrelation. Similarly, a
time-series model including a time-lagged outcome and a correction for serially correlated errors would be robust
to the concerns of Achen (2000). Taken together, we believe applied researchers with TSCS will be well served
by including outcome lags (Wy and Ly) or covariate lags (Wx and Lx)—whichever is best motivated by their
theory—and spatial and temporal error lags (Wεεε and Lεεε).
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from a STADL(sy0, ty1), i.e., the first-order spatiotemporal autoregressive model:39

yt = φyyt−1 + ρyWyt + xtβ + εεεy, (25a)

xt = φxxt−1 + ρxWxt + εεεx, (25b)

with xt, εεεy, and εεεx drawn independent standard-normal. To focus comparisons, we fix several

conditions across simulation contexts. First, N = 50 and T = 20, giving a balanced panel with

common sampling dimensions (e.g., U.S. states over 20 years). Second, we fix the parameters

β = 2, φx = 0.6, and ρx = 0.3. We vary for focal exploration the strength of temporal (φy) and

spatial (ρy) dependence in the outcome y (further design details in the Appendix).
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Figure 6: LDV Performance with Spatial Dependence — Bias in φ̂y

39The Appendix also reports results using a STADL(se0, te1), i.e. the first-order spatiotemporal autoregressive
error model, as the DGP. This allows us to explore the performance of commonly used outcome-lag models (LDV
and SAR) and our STADL model under spatiotemporal error autocorrelation. Our results demonstrate that: i)
the LDV and SAR models produced biased estimators under spatiotemporal error autocorrelation, ii) the STADL
model, on the other hand, performs well under all conditions.
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Figure 7: LDV Performance with Spatial Dependence — Bias in β̂

Figures 6 & 7 present simulation results for the LDV-model estimates. Figure 6 shows that φ̂y

(temporal-lag coefficient) suffers inflation bias for all ρy>0 (spatial-lag coefficient), with the bias

magnitude increasing in both ρy and φy. Even when φ=0, substantial bias obtains—with estimates

φ̂y reaching 0.18 for even the modest maximum spatial dependence considered here, ρy=.3—and

this bias grows as φy increases, the very conditions making account of temporal dependence more

important. The intuition is simple: the modeled temporal dependence can partially compensate for

the missing (or, by extension, mismodeled) spatial dependence, in omitted-variable-bias fashion.

While the strength of temporal dependence is important in its own right, researchers often

have greater interest in β̂, for testing and estimating the ‘effects’ of model covariates, x. Figure

7 shows how the inflated ρy estimate attenuates the β̂ estimates, with this induced attenuation

bias also quite sizable and increasing in ρy and φy. This is striking given that, with ρy>0 and

Cov(x,Wy)>0, textbook discussion on omitting the spatial lag indicates inflationary OVB in β̂.

The opposite obtains here because that textbook inflation bias manifests so strongly in φ̂y that it

induces a countervailing deflation bias in β̂, demonstrating again that conventional understandings

from single-dimensional analyses cannot be straightforwardly extended to TSCS contexts.40

40Beyond the bias in β̂, the LDV coefficient-estimate standard errors are also consistently off (i.e., average reported
s.e. overstate the standard deviation of β̂), and yet, given the large biases in β̂, the coverage of 95% confidence
interval is zero (i.e., the estimated 95% confidence intervals never bound the true value in our simulations). The
Appendix details results for these and other additional simulation metrics.
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Furthermore, the unmodeled spatial dependence also undermines standard LM tests for serial

correlation in the LDV-model estimation residuals, producing an unacceptably high false-positive

rate, meaning that using ‘remaining residual autocorrelation’ to assess the adequacy of the LDV

in addressing dependence will fail to guide specification appropriately (see Appendix).

In sum, with spatiotemporal dependence, LDV underestimates the ‘impulse’ effect of xt, ∂yt∂xt
=β̂,

but overestimates φy. As such, researchers may wonder how well these biases offset in long-run

steady-state effect-estimates. In the LDV, the LRSS effect on unit i of permanent dxi, is:

dyi,ss
dxi

=
β

1− φy
and

dyi,ss
dxj

= 0 ∀j 6=i, (26)

while the contemporaneous spatial steady-state effect of one-unit dx on y in the SAR model is:

dy

dx
= (I− ρW)−1β, (27)

which is an N×N matrix of the effects, column-by-column, of dx in that column-unit on y (in

all units). Thus, the single estimated LRSS ‘effect of x on y’ from the LDV (or any nonspatial

model) is not even in the correct dimensionality of the spatial effects (plural) of dx on dy. Spatial

dynamics imply movements in x in any unit have effects across all connected units, and movements

in x in different units have different effects because units are differently connected to each other.

Scalar summaries of ‘Average Direct Effects (ADE)’ (of xi on yi, inclusive of spatial dynamics)

and of ‘Average Indirect Effects (AIE)’ (of xj 6=i on yi) can be obtained, respectively, by averaging

the diagonal elements or by averaging off-diagonal elements of this N×N effect matrix (LeSage &

Pace 2009), but even the ADE will not compare closely to the LDV’s LRSS, because the LDV’s

temporal dynamics are quite imperfect substitutes for SAR’s spatial dynamics.

The correctly spatiotemporal dynamic and LRSS effects of dX in the general first-order STADL,

inclusive of both spatial and temporal dynamics and feedback, are given in Equations 23 and 24.

Their simplifications to this STADL(sy0, ty1) model are:

STADL(sy0, ty1) LRSS Effects: dY = (I− φI− ρW)−1 · dX · β, (28a)

STADL(sy0, ty1) Dynamic Effects: dY = (I− φL− ρW)−1 · dX · β. (28b)

For shocks to one unit, dX is the N×N identity matrix, IN , in the LRSS-effects Equation 28a,
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and, in the dynamic-effects Equation 28b, dX is that IN stacked vertically T times. For shocks to

all units, dX is an N×N block of ones. The resulting dY in 28a gives the LRSS effects in all N

units to shocking the column-unit, or to shocking all units. In 28b, these N×N block of effects dY

recurs vertically T times, period-by-period. The scalar summaries of LRSS or period-by-period

ADE and AIE are found by averaging across the N×N effects block’s diagonals or over all its

off-diagonal elements as before. Given all this, clearly, even if the LDV model accurately recovered

the LRSS average direct effect—we will show it does not—it would still produce biased estimates

of these unit-specific responses.

Figures 8 & 9 illustrate all this, in one set of conditions: φy = 0.5 and ρy = 0.3, and for one-unit

shocks. Figure 8 compares the N estimated marginal period-by-period incremental response paths,

i.e., impulse-response functions, a.k.a. the responses to temporary (one-period) shocks using (23)

of (1) the correct STADL model: N grey, thinner response-lines, and heavier black response-line

average; (2) the LDV model: one red, thicker response-line; and (3) the static-model: one dashed

response-line. The ‘direct’ effects are of shocks to unit i on outcomes in unit i; the ‘indirect’ are

summed responses in units j 6= i to shocks in unit i; and ‘total’ effects sum direct and indirect. Fig-

ure 9 plots the analogous cumulative response paths to permanent (one-unit) shocks.41 As shown

analytically above, the LDV substantially underestimates the contemporaneous (same-period) ef-

fect for all N units, and it overestimates the temporal persistence, giving incorrectly slower decay.

Thus, the LDV estimates one smaller, but more-persistent, effect, than the true STADL’s hetero-

geneous, larger, quicker-decaying true effects. The LDV also overestimates (underestimates) the

cumulative LRSS direct (cum total) effect at 6.41, to which it arrives more slowly, compared to

the average cumulative LRSS direct effect of 4.39 and total effect of 10.0 from the correct STADL,

to which it arrives more quickly. (The static model, meanwhile, radically overstates direct (and

total) contemporaneous effect, and badly mischaracterizes (and understates) the direct (and total)

cumulative effects.) In sum, even on average—i.e., disregarding the unit-specific variation—the

LDV model performs poorly (and the static nonspatial model very poorly).
41The responses to all-unit shocks differ only for spatially cognizant models, and follow the same patterns as seen

in Figures 8 & 9, at roughly N times greater scale.
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Figure 8: Response-Path Estimates of LDV Model with Spatial Dependence

Note: dotted line = static, red line = LDV, grey lines = STADL unit-by-unit, black line = STADL average units
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Figure 9: Cum. Response-Path Estimates of LDV Model with Spatial Dependence

Note: dotted line = static, red line = LDV, grey lines = STADL unit-by-unit, black line = STADL average units

The analogous explorations of SAR-model estimates show (Figure 10) the expected inflation

bias in ρ̂ when temporal dependence is present but unmodeled. When φy=0.05, this bias is greater

than 2 times(!) the true value of ρ. As researchers more-commonly attach theoretic importance to

their spatial-dependence specifications than to temporal dependence—selecting connectivity ma-

trices to test competing theories of diffusion, e.g.—this, in itself, is more substantively meaningful

than in the LDV case. Researchers interested in evaluating spatial theories in political science

must attend equally highly carefully to accurately modeling temporal dynamics. Even when most

aspects of one’s spatial model are accurately specified (e.g., correct W and spatial process), failing

to adequately address temporal dependence can produce wildly inaccurate understandings of the

spatial processes in one’s data.42

Regarding β̂, we again observe the expected inflationary bias from the failure to model tem-

poral dependence; however, this bias does not increase with the level of ρy. Why is this? First,
42The Appendix also shows average reported standard errors exceed the true standard deviation of the coefficient

across trials and yet 95% confidence intervals rarely contain the true value (coverage probabilities well below the
expected 0.95 whenever ρy 6=0 and φy 6=0) because of the coefficient-estimate bias.
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Figure 10: SAR Performance with Temporal Dependence — Bias in ρy

temporal dependence is often, as in our simulation, far more substantial than spatial. As such,

the inflationary bias in β̂ from the unmodeled temporal dynamics weighs more heavily against

the downward bias from overestimated ρ̂y than in the reverse scenario. Second, our simulation

parameters, paralleling typical real data, set the dynamics in x also to have larger temporal than

spatial dependence: φx=0.6 vs ρx=0.3. Thus, the correlation between xi,t and yi,t−1, and so the

bias from omitting the latter, is stronger than that induced by the correlation of xi,t and yj,t.43

Although the β̂ estimate (seen in Figure 11) is biased in proportion solely to the temporal-

dependence misspecification, that bias plus the inflation bias in ρ̂y compromises the effects es-

timates very notably. Recall that in spatial-autoregressive models, as in all models beyond the

purely linear-additive and separable, the effect (singular) of x on y is not β, which is merely

the pre-spatial impulse, but instead the effects (plural) are given by Equations 23 and 24. For

scalar summaries of these multidimensional effects, one can average the diagonal or off-diagonal

elements for ‘average direct’ and ‘average indirect’ effects, respectively, as previously described.

Comparing the values estimated by the incorrect SAR to those from the correct STADL, we find

that SAR overestimates the (one-unit shocks) average direct effect (SAR ADE=3.96 vs. STADL

ADE=2.03) and radically overestimates the average total (and so even more so the average in-
43Verifying this, reversing the strengths of the dependencies in x to φx=0.3 and ρx=0.6, the relative magnitude

of the bias in β̂ is reduced, and the extent of the bias is affected more acutely by the level of ρ.
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Figure 11: SAR Performance with Temporal Dependence — Bias in β

direct) contemporaneous effects (SAR ATE=10.72 vs STADL ATE=2.85). Furthermore, despite

(or perhaps given) the absence of temporal dynamics from the model, the long-run, steady-state

(LRSS) effects are also underestimated: (SAR LRSS ATE=10.72 vs. STADL LRSS ATE=10).

5 Empirical Reanalyses

To demonstrate the importance of these modeling choices for actual applied TSCS data-

analysis, we conduct two brief reanalyses of Acemoglu et al. (2008) and of Lührmann et al. (n.d.)

using our new R package, tscsdep.44 Acemoglu et al. (2008) provide one of the more prominent

recent empirical evaluations of the development–democracy connection, our running illustration

heretofore. Particularly useful for our purposes, Acemoglu et al. (2008) account for temporal

autoregressive dependence and included fixed unit & period effects, but otherwise neglect spatial

dependence. In their forthcoming APSR article, Lührmann et al. (n.d.) develop several new

country-year indices of vertical, horizontal, and diagonal political accountability, plus an overall

accountability index. Much of their article is devoted to demonstrating the content, convergent

and construct validity of these measures. They account for spatial dependence and include fixed
44Parallel Stata code forthcoming.
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unit and period effects in their analyses, but omit (autoregressive) temporal dependence.

5.1 Reanalysis of Acemoglu et al. (2008) on Development & Democracy

The main finding in Acemoglu et al. (2008) is that the otherwise robust positive effect of

economic development on democratization disappears when one includes fixed country effects

in the model. In Table 1, we use their data to estimate four regressions that contain various

combinations of fixed effects and autoregressive lags. These results starkly highlight the ways

these specification choices affect one’s analysis.45

Table 1: Reanalysis of Development & Democracy in Acemoglu et al. (2008)

Dependent variable: Democracy (Polity IV)
(1) (2) (3) (4)

Lagged RGDP Per Capita 0.237∗∗∗ 0.228∗∗∗ −0.011 0.053∗∗∗

(0.01) (0.01) (0.027) (.0.008)
Temporal Lag 0.746∗∗∗

(0.021)
Spatial Lag 0.138∗∗ 0.167∗∗∗ 0.040 0.091∗∗

(0.06) (0.058) (0.050) (0.042)

Observations 854 854 854 854
Fixed Country Effects No No Yes No
Fixed Year Effects No Yes Yes Yes
LL -162.34 -129.62 253.20 247.17
DoF (Parameters) 850 (4) 842 (12) 709 (145) 841 (13)
BIC 351.7 340.2 472.3 -406.6

Note: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01

In column (1), the regression includes lagged log-real-GDP-per-capita and a spatial lag created

with a row-standardized nearest-neighbor weights matrix (auto-generated by tscsdep). Since

spatial autoregression is the only spatiotemporal dependence in this model, the positive & signif-

icant coefficient on the spatial lag is unsurprising. We add fixed year effects in column (2). Since

democracy trends globally over the sample period, this addition greatly improves model fit. The

log-likelihood increases over 30% (-162.34 to -129.62) and the BIC decreases from 351.7 to 340.2.
45The replication is of their main two-way fixed-effects regression (Table 3, column 2) that uses Polity IV

democracy as outcome variable.
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The coefficient estimates are affected only slightly, with ρ̂ becoming larger and more-significant.

Column (3) adds country fixed-effects. These results echo the main point in Acemoglu et al.

(2008): the statistical significance of RGDP per capita on democracy disappears when we add

country fixed-effects. The spatial-lag coefficient also becomes insignificant, with the country fixed-

effects apparently accounting sizable time-invariant spatial clustering in both RGDP per capita

and democracy. The impact on model fit, however, is less clear: LL improves greatly, but the BIC

fit statistic, which penalizes for over-parameterizing the model and over-fitting the sample, also

gets much worse, increasing almost 40% (340.2 to 472.3). Scholars can reasonably disagree about

the model-selection implications of these comparisons; our purpose is merely to illuminate them.

Column (4) presents results from the model with by far the best BIC (-406.6) and LL close to

model (3) despite 132 fewer estimated parameters. Model (4) includes both temporal & spatial lag,

and period fixed-effects. The coefficients on RGDP per capita, the temporal lag, and the spatial

lag are all statistically significant. As our analyses above would suggest: ρ̂ decreases relative to

models (1) and (2), as some of the dependence is temporal rather than spatial, and β̂ decreases,

due to the (properly) larger spatial-temporal multiplier implied by ρ̂ and φ̂, which (properly)

distributes the (better) estimate of this development→democracy effect across space over time.

5.2 Reanalysis of Lührmann et al. (n.d.) on Accountability & Infant

Mortality

In their forthcoming APSR article, Lührmann et al. (n.d.) demonstrate construct validity for

their overall index of political accountability by showing that it correlates (negatively) with infant

mortality rates. They estimate four time-series-cross-sectional regressions, both in isolation and in

combination with alternative measures of accountability taken from the World Bank and Freedom

House. We conduct a brief reanalysis of their primary regression: MODEL 1 in Figure 8. The

model includes the new overall accountability index and a full set of controls, including country

and year fixed-effects as some account of spatial and temporal dependence, plus a regional average

infant mortality variable. This regional average variable is actually a kind of spatial lag, being the
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average dependent-variable among regional neighbors, but it is treated as an exogenous regressor.

Beyond the time-period indicators, temporal dependence and dynamics are not modeled.

The country fixed-effects account fixed (long-run) additive spatial clustering in the outcome,

infant mortality rates. Fixed here means constant over the entire sample period (1960-2010).

Additive means the clustering manifests as a single mean-shift, as opposed to a multiplicative

effect on some observed or unobserved covariate or an autoregressive spatial dynamic process.

The regional-average variable, which proxies a spatial autoregressive process, accounts for potential

time-varying (long-run) spatial clustering. If there are multiple regional equilibria over time (e.g.,

Southeast Asia 1961-1980; Southeast Asia 1981-2000; Southeast Asia 2001-2010), though, the

regional-average spatial-lag cannot account for this. Country fixed-effects cannot either.

The year fixed-effects can account ‘short-run’ (unique year-by-year) common shocks that are

global in scope. Again, these are additive: some mean-shift each year that is common, or on-

average, across all countries. The same infant-mortality shock, equal to that year’s single time-

dummy coefficient, hits every country. Year fixed-effects cannot account for common shocks that

are regional or otherwise sub-global in nature: e.g., an infant mortality shock specific to Southeast

Asia. If the relevant regions or groups of countries were known pre-analysis, regional-period shock

indicators (e.g., Southeast Asia 1987) could be included in regression models, but the relevant

spatio-temporal units are rarely known, and this strategy quickly overloads degrees of freedom.

An alternative strategy to account for regional common shocks is to add spatial lags in first

differences to regression models. Because spatial lags represent autoregression in space—countries

influence first, second and third (etc.) order neighbors with geometrically decaying impact—they

provide a certain flexibility with respect to identifying the geographical boundaries of shocks that

regional indicators do not. The spatial-weights matrix could connect ‘k-nearest neighbors’, e.g.,

around each country (automatically generated using tscsdep), whereas ‘regions’ must be pre-

identified. Additionally, spatial lags are generally far more parsimonious than regional-period

shock indicators because a single spatial-lag defines a ‘neighborhood’ for every sample-unit.

More generally, in STADL models, right-hand-side variables that are differenced produce short-
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run shocks to left-hand-side outcomes, whereas variables in levels produce long-run effects through

temporal multipliers. Lührmann et al.’s MODEL 1 includes a de facto endogenous spatial lag in the

regional averages, which are incorrectly treated as exogenous, and that we will assume are roughly

specified relative to the true spatial-dependence process. Their model also includes country and

year fixed effects, but no temporal dynamics, a stark omission given that infant-mortality rates

are likely highly persistent temporally. We also think that regional shocks in infant mortality rates

are highly plausible. Therefore, we include a temporal lag and a nearest-neighbor spatial lag in

first differences in our reanalysis model:

yit = xitβ + φyit−1 + ρwi∆yt + fi + gt + εit, (29)

with yit being infant mortality in unit i in year t, xit a 1×k vector of exogenous covariates for

unit-year it, β a k×1 vector of coefficients, ρ the spatial-lag coefficient, wi a unit-specific vector

of spatial weights, ∆yt a time-t vector of differenced outcomes, fi a fixed unit-effect, gt a fixed

period-effect, and εit an i.i.d. disturbance for unit-time it. Some algebraic manipulation rewrites

this with a differenced outcome (which is more-convenient for expressing the likelihood):

∆yit = xitβ + (φ− 1)yit−1 + ρwi∆yt + fi + gt + εit. (30)

As the original analysis treats the regional-average variable as an exogenous regressor among

xit, we retain this specification for better comparability. While this regional-average variable

accounts for some spatial dependence, it is likely overestimated because temporal dependence

(which is very high in infant mortality) is omitted, beyond the year-effects—which year-effects,

due to regional concentration in infant-mortality shocks, likely miss considerable spatiotemporal

dependence as well. Our analyses above suggest that the unfortunate consequence of this mis-

estimation of the spatiotemporal dependence is that Lührmann et al. may well have underestimated

the strength of the relationship of their political-accountability measure to infant mortality.

We replicate original results in Table 2 column one. Then, with tscsdep, we create a nearest-

neighbor spatial weights matrix and estimate the spatiotemporal-autoregressive (STADL(sy0, ty1)

model incorporating spatially and temporally lagged dependent-variable regressors, reported in
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Table 2: Reanalysis of the Accountability / Infant Mortality Regression
in Lührmann et al. (n.d.)

Dependent variable: Infant Mortality

Level Difference Long Run

Accountability −4.256∗∗∗ −0.197∗∗∗ −9.748
(0.351) (0.038)

Foreign aid −0.048 0.016∗∗∗ 0.771
(0.031) (0.003)

GDP/capita (ln) −9.559∗∗∗ 0.763∗∗∗ 37.74
(0.761) (0.084)

Economic Growth 0.033 −0.019∗∗∗ -0.972
(0.024) (0.003)

Resource dependence 0.040∗ 0.013∗∗∗ 0.661
(0.022) (0.002)

Economic inequality −0.062∗∗ 0.006 0.293
(0.031) (0.003)

Population (ln) −13.879∗∗∗ 0.632∗∗∗ 31.23
(1.485) (0.163)

Urbanization −0.142∗∗∗ 0.023∗∗∗ 1.135
(0.028) (0.003)

Political violence 0.358∗∗∗ −0.016 −0.810
(0.129) (0.014)

Communist 0.956 −0.784∗∗∗ -38.77
(1.620) (0.174)

Infant mortality, regional average 0.674∗∗∗ 0.008∗∗∗ 0.419
(0.020) (0.002)

Political corruption index −2.907∗ −0.293 -14.505
(1.905) (0.205)

Temporal Lag (Level) -0.020∗∗∗
(0.002)

Spatial Lag (Difference) 0.037∗
(0.020)

Observations 4,354 4,312
Fixed Country Effects Yes Yes
Fixed Year Effects Yes Yes

Note: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01

the second column. The LRSS effects46 of each covariate x in xit are given in the third column.

Comparing the implicit spatial steady-state implied by the regional-average variable in the original
46These LRSS use only the temporal multiplier as Lührmann et al. do not interpret their implicit spatial-lag

regional-average as such and our added spatial lag is in changes, not levels.
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regression, which ignores temporal (autoregressive) dynamics, with our estimate of the spatial

steady-state effect, we estimate that the former overstates the extent of spatial dependence by

nearly 38% in this comparison. More simply and starkly, comparing the first and third columns,

we estimate that the spatiotemporal LRSS effect of Lührmann et al.’s political accountability on

infant mortality rates (−9.748) is more than double the ‘effect’ they reported (β̂=− 4.256), which

mostly ignores these important spatial and temporal dynamic dependencies.

6 Conclusion

This paper considers the implications of the multidimensional dependence, the dynamics in

both space and time, typically manifest in TSCS data for the currently common practice in empir-

ical analyses to privilege one of temporal or spatial dependence to the complete or relative neglect

of the other. With dependence in both space and time, however, modeling dependence in one

dimension while neglecting the other results in biases that differ from those considered heretofore

in textbook treatments of temporal and spatial dependence. We detailed and demonstrated these

biases analytically and in simulations and applications. To address these issues, we proposed a spa-

tiotemporal model, the first-order STADL, which nests many of the most-widely used space-time

specifications in political science (e.g., the first-order LDV, ADL, SAR, SDM), and discussed the

interpretation of the varieties of spatiotemporally dynamic effects different STADL specifications

entail. We suggested that beginning with this more-general STADL specification and using Wald

tests to guide model refinement reduces the risk of unmodeled dynamics, a necessary condition for

valid estimation and inferences regarding parameters and effects. To better enable researchers to

adopt the strategies presented here, we developed R package, tscsdep (see Appendix for detail;

GitHub to download) to construct common weights matrices, including for unbalanced panels,

estimate the STADL model, and generate STADL dynamic and LRSS effects.

To mention possible drawbacks, and work remaining to be done, with our recommended STADL

approach for TSCS data analysis: we have not addressed the topic of order-specification decisions,

focusing instead on source & dimension specification, and we did not raise the possibility of overfit-
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ting STADL models to sample idiosyncrasies. We believe effective approaches to these challenges

extend naturally from time-series and spatial econometrics. For instance, autocorrelation and

partial autocorrelation (AC, PAC) functions used to guide time-series order specification can be

extended to spatiotemporal AC and PAC functions. Likewise, out-of-sample forecasting is the

gold-standard safeguard against overfitting and is similarly extendable to spatiotemporal TSCS

contexts. These projects head our research agenda going forward.
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1 TSCS Data in the APSR, AJPS and JOP

To calculate the number of articles that use time-series cross-sectional data, we analyzed 7336

research articles appearing in The American Political Science Review, The American Journal of

Political Science, and The Journal of Politics, from 1980 to 2019. Using this set of articles, we

counted the occurrence(s) of a list of keywords related to time-series cross-sectional data in each

article. For the years 1980 to 2014, we use the data and metadata provided by JSTOR’s API.1

To collect the recent articles that are not covered by JSTOR’s API, we directly scraped the text

from each journal’s website, the same keywords are used to count the number of occurrences in

each article.

These results are summarized in Figure 1 which provides the yearly count of articles using

keywords associated with TSCS data analysis. Specifically, TSCS (solid line) gives the number of

articles using at least one of the following keywords: ‘time series cross section(al)’, ‘tscs’, ‘panel

data.’2 Within the set of TSCS articles, we then count those that use keywords consistent with

Temporal analysis (dotted line) – e.g., ‘time series’, ‘time serial’, ‘temporal autocorrelation’, ‘tem-

poral correlation’,‘temporal dependence’, ‘temporal dynamics’, ‘time dependence’, ‘time lag(ged)’,

‘time lagged dependent’, ‘serial correlation’, ‘serially correlated’, ‘serial dependence.’ – and Spatial

analysis (dashed line) – e.g., ‘spatial dependence’, ‘spatial interdependence’, ‘spatial autocorre-

lation’, ‘spatial correlation’, ‘spatially correlated’, ‘spatial lag’, ‘spatial-lag dependent’, ‘spatially

lagged’, ‘spatially lagged dependent.’

1JSTOR’s API has different time coverage for each journal. It provides upto 2014, 2015, 2018 for APSR, JOP,
AJPS, respectively.

2Since JSTOR’s API only provides the count of words up to trigrams, we use the keyword ‘time series cross’
instead of ‘time series cross section’ or ‘time series cross sectional’.
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Figure 1: Count of Articles Using TSCS Data in the Top-3, 1980-2019

The results demonstrate that TSCS data remain widely used, with 33 articles appearing in

the top-3 (APSR, AJPS, and JOP) in 2019 alone. Few of these, however, seem to meaningfully

consider both temporal and spatial dependence. In 2019, for example, of the 33 TSCS articles only

12 used keywords consistent with temporal analysis and only 2 with spatial analysis. As such,

at most 2 could have jointly considered both temporal and spatial analysis, as our manuscript

suggests in necessary.
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2 Monte Carlo Analysis

2.1 Additional Design Details

The spatial locations for the units are generated by twice taking N draws from a standard

uniform to create xy-coordinates for each unit. The wij relative connections between units are

then generated using a k-Nearest Neighbor algorithm with k = 5, returning a binary N -by-N

matrix W
N

with each element wij = 1 for the five closest j to i and 0 for all others (and all

wii = 0 along the diagonal). The Kronecker product of this matrix and a T -dimensional identity

matrix produces W, an NT -by-NT matrix with each N -by-N block W
N

along the prime diagonal

giving the dyadic relations, which are assumed constant over time. We also assume that this same

W operates with respect to spatial dynamics in y, x, u, and e, and that it is known to the

researcher.3

In order to focus on how varying the strength of φy and ρy affect model performance, we fix the

parameters for β = 2, φx = 0.6, and ρx = 0.3, and confine attention to variation in the temporal

dependence – φy = {0,0.1,. . . ,0.4,0.5} – and spatial dependence – ρy = {0,0.05,. . . ,0.25,0.3} – in

y.4 We are primarily interested in understanding how well the LDV and SAR models recover β,

however, we also examine how the estimates of φy and ρy are affected.

2.2 Lagrange Multiplier Tests

Current best practice (as advised by Beck and Katz (2011), e.g.) suggests post-estimation

diagnostic tests for remaining serial dependence in estimated residuals, specifically Lagrange Mul-

tiplier tests of auxiliary regressions of estimated residuals on their lags. Unfortunately, these

post-estimation tests for remaining temporal dependence will lead researchers astray when there

is (unmodeled, i.e. remaining) residual spatial autocorrelation. Here, too, the unmodeled spatial

3Noteworthy–in that these following are also commonly issues in TSCS data-analysis–among the simplifying
assumptions in our simulations are (1) no parameter heterogeneity and (2) all regressors X are exogenous.

4The extent of the bias in these parameter estimates is a function of φx and ρx, but for tractability we fix and
do not estimate these two parameters.
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dependence is “mistaken” for temporal dependence, causing researchers to over-reject the null,

the frequency of which false-positive rate, intuitively, increases in ρy as shown in Figure 2). The

LM test for residual serial correlation has power against the incorrect alternative under these

circumstances, erroneously registering the spatial dependence as temporal dependence, leading

researchers to take inappropriate remedial actions – e.g., modeling higher-order time-lags of the

outcome – rather than addressing the truly spatial cause of the dependence in the residuals.

Figure 2: False-Positive Rate of Lagrange Multiplier test with Spatial Dependence
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2.3 STADL Results

In the main text we demonstrate the bias of the SAR and the LDV models when there is

unmodeled temporal or spatial dependence, respectively. We also imply that since the STADL

model accounts for both temporal and spatial dependence, that it should be unbiased under these

conditions. Here we demonstrate that explicitly, showing that under all conditions evaluated in

our simulations the STADL model is an unbiased estimator of β (Figure 3), ρ (Figure 4), and φ

(Figure 5).
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Figure 3: STADL performance with Spatio-temporal dependence – Bias in β
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Figure 4: STADL performance with Spatio-temporal dependence – Bias in ρ
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Figure 5: STADL performance with Spatio-temporal dependence – Bias in φ
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2.4 Additional Model Comparisons

In the main text we focus exclusively on bias when evaluating the models under different

simulated conditions. Here we report additional quantities of interest, including bias (Bias),

average standard error (Avg. SE), the standard deviation of the empirical distribution (SD),

mean square error (MSE), and the coverage probabilities (CP).5 Since reporting all of the simulated

conditions in this manner would be unwieldy, we focus on 4 values of ρ (0.0, 0.1, 0.2, 0.3), within

each table, and 6 values for φ (0.0, . . . , 0.5). Each Table (1-6) reports the results for a set value

of φ (ex. Table 1 is φ = 0), and different values of ρ (with values increasing as one moves down

the Table). The results are consistent with what we would expect, in that failing to properly

account for dependence between the observations induces bias, inaccurate standard errors (as

demonstrated by the deviation of the Avg. SE and the SD), increased mean square error, and

confidence intervals that rarely bound the true value (as indicated by CP).

5The coverage probabilities (CP) are calculated using the 95% confidence intervals (CIs) for each models sample
coefficient and standard error estimate. The reported value for CP indicates the proportion of trials for which the
95% CI contains the true coefficient.
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Table 1: Simulation Results, φ = 0.0

β φ ρ
Static LDV SAR STADL LDV STADL SAR STADL

ρ = 0.0

Bias -0.001 -0.001 0.000 -0.000 0.000 0.000 -0.001 -0.001
Avg. SE 0.011 0.027 0.012 0.027 0.013 0.013 0.010 0.010

SD 0.010 0.025 0.011 0.026 0.013 0.013 0.010 0.010
MSE 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000

CP 0.956 0.976 0.956 0.968 0.964 0.964 0.960 0.964

ρ = 0.1

Bias 0.065 0.008 0.000 0.001 0.027 -0.000 -0.002 -0.002
Avg. SE 0.011 0.028 0.012 0.026 0.013 0.013 0.010 0.010

SD 0.010 0.029 0.012 0.028 0.014 0.014 0.010 0.010
MSE 0.004 0.001 0.000 0.001 0.001 0.000 0.000 0.000

CP 0.000 0.936 0.956 0.944 0.456 0.944 0.952 0.956

ρ = 0.2

Bias 0.150 -0.037 0.001 0.001 0.088 0.000 -0.000 -0.000
Avg. SE 0.013 0.031 0.012 0.026 0.014 0.013 0.009 0.009

SD 0.012 0.031 0.013 0.027 0.015 0.013 0.009 0.010
MSE 0.023 0.002 0.000 0.001 0.008 0.000 0.000 0.000

CP 0.000 0.808 0.936 0.956 0.000 0.940 0.948 0.952

ρ = 0.3

Bias 0.251 -0.132 -0.002 -0.002 0.176 0.000 0.000 -0.000
Avg. SE 0.017 0.036 0.013 0.025 0.016 0.012 0.008 0.009

SD 0.012 0.033 0.013 0.026 0.016 0.012 0.009 0.010
MSE 0.063 0.019 0.000 0.001 0.031 0.000 0.000 0.000

CP 0.000 0.032 0.960 0.936 0.000 0.944 0.932 0.940
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Table 2: Simulation Results, φ = 0.1

β φ ρ
Static LDV SAR STADL LDV STADL SAR STADL

ρ = 0.0

Bias 0.200 0.000 0.195 0.001 -0.001 -0.001 0.009 0.000
Avg. SE 0.011 0.027 0.013 0.027 0.012 0.012 0.009 0.009

SD 0.011 0.026 0.013 0.026 0.012 0.012 0.011 0.010
MSE 0.040 0.001 0.038 0.001 0.000 0.000 0.000 0.000

CP 0.000 0.960 0.000 0.952 0.956 0.960 0.804 0.936

ρ = 0.1

Bias 0.283 -0.004 0.195 0.001 0.034 -0.001 0.020 0.001
Avg. SE 0.012 0.028 0.013 0.027 0.012 0.012 0.009 0.009

SD 0.013 0.028 0.014 0.026 0.012 0.011 0.009 0.008
MSE 0.080 0.001 0.038 0.001 0.001 0.000 0.000 0.000

CP 00.000 0.968 0.000 0.964 0.248 0.968 0.416 0.968

ρ = 0.2

Bias 0.389 -0.075 0.195 0.002 0.105 -0.001 0.029 0.000
Avg. SE 0.015 0.032 0.013 0.026 0.013 0.012 0.008 0.009

SD 0.012 0.029 0.013 0.026 0.012 0.011 0.009 0.009
MSE 0.151 0.007 0.038 0.001 0.011 0.000 0.001 0.000

CP 0.000 0.352 0.000 0.948 0.000 0.956 0.080 0.956

ρ = 0.3

Bias 0.529 -0.210 0.195 0.001 0.207 -0.000 0.041 0.001
Avg. SE 0.020 0.037 0.013 0.025 0.014 0.011 0.008 0.009

SD 0.014 0.030 0.015 0.025 0.012 0.011 0.008 0.009
MSE 0.280 0.045 0.038 0.001 0.043 0.000 0.002 0.000

CP 0.000 0.000 0.000 0.944 0.000 0.960 0.000 0.932
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Table 3: Simulation Results, φ = 0.2

β φ ρ
Static LDV SAR STADL LDV STADL SAR STADL

ρ = 0.0

Bias 0.447 -0.001 0.433 -0.000 -0.000 -0.000 0.020 0.000
Avg. SE 0.012 0.027 0.014 0.027 0.011 0.011 0.010 0.008

SD 0.013 0.027 0.015 0.027 0.011 0.011 0.010 0.008
MSE 0.200 0.001 0.188 0.001 0.000 0.000 0.001 0.000

CP 0.000 0.956 0.000 0.952 0.940 0.940 0.432 0.948

ρ = 0.1

Bias 0.553 -0.018 0.433 0.002 0.041 -0.001 0.044 0.000
Avg. SE 0.014 0.029 0.014 0.027 0.011 0.011 0.009 0.008

SD 0.014 0.027 0.015 0.026 0.011 0.011 0.010 0.009
MSE 0.306 0.001 0.187 0.001 0.002 0.000 0.002 0.000

CP 0.000 0.912 0.000 0.956 0.040 0.944 0.000 0.924

ρ = 0.2

Bias 0.694 -0.127 0.431 0.000 0.125 0.000 0.069 0.000
Avg. SE 0.019 0.033 0.015 0.026 0.012 0.010 0.008 0.008

SD 0.015 0.029 0.015 0.026 0.012 0.011 0.009 0.008
MSE 0.482 0.017 0.186 0.001 0.016 0.000 0.005 0.000

CP 0.000 0.016 0.000 0.940 0.000 0.944 0.000 0.948

ρ = 0.3

Bias 0.882 -0.302 0.425 -0.001 0.235 -0.000 0.093 -0.000
Avg. SE 0.026 0.038 0.015 0.025 0.013 0.010 0.007 0.008

SD 0.016 0.030 0.016 0.026 0.011 0.010 0.007 0.008
MSE 0.779 0.092 0.181 0.001 0.055 0.000 0.009 0.000

CP 0.000 0.000 0.000 0.948 0.000 0.952 0.000 0.960
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Table 4: Simulation Results, φ = 0.3

β φ ρ
Static LDV SAR STADL LDV STADL SAR STADL

ρ = 0.0

Bias 0.758 0.001 0.731 0.002 -0.000 -0.001 0.037 0.000
Avg. SE 0.015 0.027 0.017 0.027 0.010 0.010 0.010 0.007

SD 0.014 0.027 0.017 0.027 0.010 0.010 0.010 0.007
MSE 0.575 0.001 0.534 0.001 0.000 0.000 0.001 0.000

CP 0.000 0.948 0.000 0.940 0.944 0.932 0.056 0.940

ρ = 0.1

Bias 0.898 -0.042 0.725 -0.000 0.049 0.000 0.079 -0.000
Avg. SE 0.018 0.029 0.018 0.026 0.010 0.010 0.009 0.007

SD 0.016 0.029 0.018 0.028 0.010 0.010 0.010 0.007
MSE 0.806 0.003 0.526 0.001 0.003 0.000 0.006 0.000

CP 0.000 0.708 0.000 0.960 0.008 0.944 0.000 0.932

ρ = 0.2

Bias 1.090 -0.191 0.717 0.000 0.143 -0.000 0.121 -0.000
Avg. SE 0.025 0.033 0.018 0.025 0.011 0.009 0.009 0.007

SD 0.017 0.027 0.017 0.025 0.010 0.009 0.007 0.006
MSE 1.189 0.037 0.515 0.001 0.021 0.000 0.015 0.000

CP 0.000 0.000 0.000 0.952 0.000 0.944 0.000 0.964

ρ = 0.3

Bias 1.370 -0.409 0.708 0.001 0.260 -0.000 0.164 -0.000
Avg. SE 0.037 0.038 0.019 0.024 0.011 0.009 0.008 0.007

SD 0.018 0.028 0.018 0.026 0.009 0.010 0.007 0.007
MSE 1.877 0.168 0.501 0.001 0.068 0.000 0.027 0.000

CP 0.000 0.000 0.000 0.924 0.000 0.936 0.000 0.948
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Table 5: Simulation Results, φ = 0.4

β φ ρ
Static LDV SAR STADL LDV STADL SAR STADL

ρ = 0.0

Bias 1.161 0.000 1.108 0.000 0.000 0.000 0.059 0.000
Avg. SE 0.020 0.027 0.022 0.027 0.008 0.009 0.011 0.006

SD 0.016 0.028 0.020 0.028 0.009 0.009 0.010 0.007
MSE 1.347 0.001 1.228 0.001 0.000 0.000 0.004 0.000

CP 0.000 0.940 0.000 0.940 0.940 0.936 0.000 0.948

ρ = 0.1

Bias 1.354 -0.069 1.097 0.001 0.057 0.000 0.124 -0.001
Avg. SE 0.025 0.029 0.023 0.026 0.008 0.008 0.010 0.006

SD 0.020 0.027 0.021 0.027 0.008 0.008 0.008 0.006
MSE 1.833 0.005 1.204 0.001 0.003 0.000 0.015 0.000

CP 0.000 0.336 0.000 0.940 0.000 0.956 0.000 0.960

ρ = 0.2

Bias 1.635 -0.272 1.076 0.000 0.161 -0.000 0.191 -0.000
Avg. SE 0.036 0.034 0.024 0.025 0.009 0.008 0.009 0.006

SD 0.020 0.027 0.021 0.025 0.008 0.008 0.008 0.006
MSE 2.673 0.075 1.158 0.001 0.026 0.000 0.036 0.000

CP 0.000 0.000 0.000 0.936 0.000 0.932 0.000 0.944

ρ = 0.3

Bias 2.079 -0.533 1.051 0.003 0.280 -0.001 0.258 0.000
Avg. SE 0.056 0.038 0.026 0.023 0.009 0.007 0.008 0.006

SD 0.022 0.023 0.021 0.023 0.006 0.007 0.006 0.006
MSE 4.324 0.285 1.106 0.001 0.079 0.000 0.066 0.000

CP 0.000 0.000 0.000 0.928 0.000 0.956 0.000 0.968
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Table 6: Simulation Results, φ = 0.5

β φ ρ
Static LDV SAR STADL LDV STADL SAR STADL

ρ = 0.0

Bias 1.698 0.002 1.604 0.002 -0.001 -0.001 0.089 -0.000
Avg. SE 0.027 0.026 0.031 0.026 0.007 0.007 0.013 0.005

SD 0.020 0.027 0.024 0.027 0.007 0.007 0.010 0.005
MSE 2.884 0.001 2.573 0.001 0.000 0.000 0.008 0.000

CP 0.000 0.936 0.000 0.936 0.944 0.948 0.000 0.948

ρ = 0.1

Bias 1.982 -0.112 1.577 -0.003 0.067 0.001 0.187 -0.001
Avg. SE 0.036 0.028 0.032 0.025 0.007 0.007 0.012 0.005

SD 0.020 0.027 0.024 0.025 0.007 0.007 0.009 0.006
MSE 3.931 0.013 2.488 0.001 0.005 0.000 0.035 0.000

CP 0.000 0.020 0.000 0.960 0.000 0.940 0.000 0.916

ρ = 0.2

Bias 2.428 -0.374 1.534 -0.000 0.177 -0.000 0.284 0.000
Avg. SE 0.055 0.034 0.034 0.024 0.007 0.007 0.010 0.005

SD 0.022 0.022 0.024 0.022 0.005 0.006 0.007 0.005
MSE 5.897 0.141 2.352 0.000 0.031 0.000 0.081 0.000

CP 0.000 0.000 0.000 0.964 0.000 0.976 0.000 0.948

ρ = 0.3

Bias 3.207 -0.676 1.473 0.002 0.293 -0.000 0.376 0.000
Avg. SE 0.095 0.037 0.036 0.022 0.006 0.006 0.008 0.005

SD 0.027 0.019 0.025 0.022 0.004 0.006 0.004 0.006
MSE 10.285 0.458 2.170 0.000 0.086 0.000 0.141 0.000

CP 0.000 0.000 0.000 0.952 0.000 0.944 0.000 0.940
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2.5 Spatiotemporal Error Autocorrelation

In the main text we focus primarily on model performance under different levels of spatial interde-

pendence (i.e., ρ) and serial autodependence (i.e., φ) in the outcome directly, reflecting the wide

use of the SAR and LDV model in applied work. However, we might also be interested in how

these models perform under varying levels of spatial and temporal error autocorrelation (λ and δ

respectively). To evaluate this, we generate data from a STADL(se0, te1):

yt = xtβ + (I− δL− λW)−1εεεy,

with λ and δ determining the level of spatial and temporal error autocorrelation.6 Below we report

various quantities of interest (bias, average standard error, standard deviation, mean square error,

and the coverage probabilities) for a subset of the simulated conditions: 4 values of λ (0.0, 0.1,

0.2, 0.3), within each table, and 6 values for δ (0.0, . . . , 0.5). Each Table (7-12) reports the results

for a set value of δ (ex. Table 7 is δ = 0), and different values of λ (with values increasing as one

moves down the Table). We focus on the estimator of β, since it is common across models and

reflects the total effect of xt on yt under our simulated conditions.

The results are consistent with what we would expect, so we only briefly describe them glob-

ally here. First, under either (or both) forms of error dependence, the static model is unbiased by

produces overly confident standard errors (as seen by the difference between Avg. SE and SD),

resulting in poor coverage. Second, the respective error correlation models (SCE and SEM) are

also always unbiased, however, they each produce overly confident standard errors when there is

dependence in the unmodeled dimension. For example, when there is temporal error autocorre-

lation (δ 6= 0), we see the standard errors of the SEM model is overconfident (i.e., Avg. SE <

SD) and, as a result, the coverage probabilities are lower than the targeted 95%. Third, the LDV

and SAR models perform poorly under error dependence, as this is now partially captured by the

(time or spatial) lag of the outcome, producing an inflationary bias in φ and ρ and consequently

6All other model features are held fixed and identical to the DGP in the main text: β = 2, x is generated with
spatial and temporal dependence, etc.
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an attenuating bias in β (due to the covariate between the lags and x).7 This can be seen most

acutely in the performance of the LDV model under higher values of δ, as the bias increases

and the coverage probabilities decrease. Fortunately, the STADL model performs well across all

simulated conditions: unbiased, accurate SEs, low mean square error, and coverage probabilities

consistently around 95%.

Table 7: Simulation Results, δ = 0.0

β
Static SCE SEM LDV SAR STADL

λ = 0.0

Bias -0.001 -0.002 -0.000 -0.001 0.000 -0.002
Avg. SE 0.011 0.029 0.011 0.027 0.012 0.029

SD 0.010 0.027 0.010 0.025 0.011 0.027
MSE 0.000 0.001 0.000 0.001 0.000 0.001

CP 0.956 0.980 0.956 0.976 0.956 0.976

λ = 0.1

Bias -0.000 -0.000 -0.001 0.000 -0.002 0.000
Avg. SE 0.011 0.029 0.011 0.027 0.012 0.029

SD 0.010 0.030 0.010 0.028 0.012 0.030
MSE 0.000 0.001 0.000 0.001 0.000 0.001

CP 0.964 0.936 0.956 0.936 0.952 0.928

λ = 0.2

Bias 0.001 0.000 0.001 0.001 -0.003 -0.000
Avg. SE 0.011 0.029 0.011 0.027 0.012 0.029

SD 0.012 0.030 0.012 0.028 0.013 0.029
MSE 0.000 0.001 0.000 0.001 0.000 0.001

CP 0.936 0.964 0.940 0.940 0.948 0.968

λ = 0.3

Bias -0.002 -0.002 -0.002 -0.002 -0.009 -0.001
Avg. SE 0.011 0.029 0.012 0.027 0.013 0.030

SD 0.012 0.031 0.011 0.029 0.012 0.029
MSE 0.000 0.001 0.000 0.001 0.000 0.001

CP 0.924 0.944 0.972 0.936 0.896 0.948

7β in the LDV and SAR models now reflects the short-run and pre-spatial effect respectively, however, under
the simulated DGP the true long-run and post-spatial effects should be zero. As such, any bias given here does
reflect an underestimation of the short-run, pre-spatial effects and a misattribution of the total effect of xt on yt.
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Table 8: Simulation Results, δ = 0.1

β
Static SCE SEM LDV SAR STADL

λ = 0.0

Bias -0.001 0.000 -0.001 -0.030 -0.001 0.000
Avg. SE 0.011 0.029 0.011 0.027 0.012 0.028

SD 0.011 0.028 0.012 0.025 0.013 0.028
MSE 0.000 0.001 0.000 0.002 0.000 0.001

CP 0.940 0.944 0.940 0.808 0.936 0.940

λ = 0.1

Bias 0.000 0.000 0.000 -0.029 -0.002 0.000
Avg. SE 0.011 0.029 0.011 0.027 0.012 0.029

SD 0.013 0.030 0.013 0.026 0.013 0.030
MSE 0.000 0.001 0.000 0.002 0.000 0.001

CP 0.900 0.956 0.912 0.776 0.916 0.956

λ = 0.2

Bias -0.001 0.000 -0.001 -0.031 -0.005 -0.001
Avg. SE 0.011 0.029 0.011 0.027 0.012 0.029

SD 0.012 0.030 0.012 0.028 0.013 0.029
MSE 0.000 0.001 0.000 0.002 0.000 0.001

CP 0.932 0.936 0.960 0.792 0.944 0.944

λ = 0.3

Bias 0.001 0.001 0.000 -0.032 -0.007 -0.000
Avg. SE 0.011 0.029 0.012 0.027 0.013 0.030

SD 0.014 0.031 0.014 0.029 0.014 0.029
MSE 0.000 0.001 0.000 0.002 0.000 0.001

CP 0.884 0.940 0.908 0.776 0.888 0.956
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Table 9: Simulation Results, δ = 0.2

β
Static SCE SEM LDV SAR STADL

λ = 0.0

Bias -0.001 0.000 -0.001 -0.064 -0.001 0.000
Avg. SE 0.011 0.029 0.011 0.027 0.012 0.029

SD 0.013 0.028 0.013 0.026 0.015 0.028
MSE 0.000 0.001 0.000 0.005 0.000 0.001

CP 0.900 0.952 0.880 0.352 0.904 0.948

λ = 0.1

Bias 0.000 0.003 0.000 -0.062 -0.002 0.003
Avg. SE 0.011 0.029 0.011 0.027 0.012 0.029

SD 0.014 0.029 0.014 0.026 0.015 0.028
MSE 0.000 0.001 0.000 0.005 0.000 0.001

CP 0.876 0.960 0.880 0.336 0.908 0.952

λ = 0.2

Bias 0.000 -0.001 0.001 -0.066 -0.004 -0.002
Avg. SE 0.011 0.029 0.012 0.027 0.013 0.029

SD 0.015 0.029 0.015 0.029 0.015 0.028
MSE 0.000 0.001 0.000 0.005 0.000 0.001

CP 0.860 0.948 0.888 0.308 0.880 0.952

λ = 0.3

Bias -0.002 -0.002 -0.002 -0.071 -0.010 -0.002
Avg. SE 0.011 0.029 0.012 0.028 0.013 0.030

SD 0.016 0.034 0.015 0.031 0.015 0.032
MSE 0.000 0.001 0.000 0.006 0.000 0.001

CP 0.824 0.896 0.876 0.308 0.820 0.924
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Table 10: Simulation Results, δ = 0.3

β
Static SCE SEM LDV SAR STADL

λ = 0.0

Bias 0.001 0.000 0.001 -0.096 0.001 0.000
Avg. SE 0.011 0.029 0.011 0.027 0.013 0.028

SD 0.014 0.029 0.015 0.028 0.017 0.029
MSE 0.000 0.001 0.000 0.010 0.000 0.001

CP 0.892 0.932 0.864 0.060 0.860 0.932

λ = 0.1

Bias -0.000 -0.002 -0.000 -0.098 -0.002 -0.002
Avg. SE 0.011 0.029 0.012 0.027 0.013 0.029

SD 0.016 0.032 0.016 0.031 0.017 0.032
MSE 0.000 0.001 0.000 0.011 0.000 0.001

CP 0.836 0.920 0.836 0.080 0.844 0.912

λ = 0.2

Bias -0.002 -0.001 -0.002 -0.101 -0.006 -0.001
Avg. SE 0.011 0.029 0.012 0.028 0.013 0.029

SD 0.017 0.029 0.016 0.029 0.016 0.028
MSE 0.000 0.001 0.000 0.011 0.000 0.001

CP 0.812 0.932 0.856 0.064 0.840 0.944

λ = 0.3

Bias -0.001 -0.001 -0.000 -0.110 -0.009 -0.001
Avg. SE 0.012 0.030 0.012 0.028 0.013 0.030

SD 0.018 0.034 0.017 0.033 0.017 0.031
MSE 0.000 0.001 0.000 0.013 0.000 0.001

CP 0.804 0.912 0.860 0.056 0.808 0.944
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Table 11: Simulation Results, δ = 0.4

β
Static SCE SEM LDV SAR STADL

λ = 0.0

Bias 0.001 -0.001 0.001 -0.137 0.001 -0.001
Avg. SE 0.012 0.029 0.012 0.028 0.013 0.028

SD 0.016 0.031 0.017 0.030 0.019 0.031
MSE 0.000 0.001 0.000 0.020 0.000 0.001

CP 0.844 0.928 0.840 0.012 0.812 0.924

λ = 0.1

Bias 0.001 0.000 0.001 -0.137 -0.001 0.000
Avg. SE 0.012 0.029 0.012 0.028 0.013 0.029

SD 0.020 0.031 0.020 0.032 0.020 0.031
MSE 0.000 0.001 0.000 0.020 0.000 0.001

CP 0.736 0.936 0.748 0.004 0.780 0.936

λ = 0.2

Bias -0.002 0.002 -0.002 -0.144 -0.008 0.002
Avg. SE 0.012 0.029 0.013 0.028 0.013 0.029

SD 0.020 0.030 0.019 0.032 0.020 0.030
MSE 0.000 0.001 0.000 0.022 0.000 0.001

CP 0.752 0.960 0.800 0.000 0.780 0.952

λ = 0.3

Bias 0.002 0.003 0.001 -0.154 -0.010 0.002
Avg. SE 0.012 0.029 0.013 0.029 0.014 0.029

SD 0.022 0.031 0.020 0.033 0.020 0.030
MSE 0.000 0.001 0.000 0.025 0.000 0.001

CP 0.704 0.924 0.780 0.000 0.760 0.928
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Table 12: Simulation Results, δ = 0.5

β
Static SCE SEM LDV SAR STADL

λ = 0.0

Bias -0.001 0.002 -0.001 -0.186 -0.001 0.002
Avg. SE 0.012 0.029 0.012 0.029 0.014 0.028

SD 0.020 0.029 0.020 0.033 0.023 0.029
MSE 0.000 0.001 0.000 0.036 0.001 0.001

CP 0.784 0.928 0.784 0.000 0.776 0.928

λ = 0.1

Bias -0.000 -0.003 -0.000 -0.192 -0.004 -0.004
Avg. SE 0.012 0.029 0.013 0.029 0.014 0.029

SD 0.020 0.031 0.020 0.033 0.022 0.031
MSE 0.000 0.001 0.000 0.038 0.000 0.001

CP 0.756 0.928 0.788 0.000 0.800 0.928

λ = 0.2

Bias -0.002 0.002 -0.002 -0.197 -0.010 0.002
Avg. SE 0.012 0.029 0.013 0.030 0.014 0.029

SD 0.022 0.030 0.021 0.031 0.022 0.029
MSE 0.000 0.001 0.000 0.040 0.001 0.001

CP 0.760 0.940 0.800 0.000 0.768 0.960

λ = 0.3

Bias 0.001 0.000 0.001 -0.223 -0.014 -0.000
Avg. SE 0.013 0.030 0.014 0.030 0.015 0.030

SD 0.027 0.034 0.024 0.039 0.024 0.033
MSE 0.001 0.001 0.001 0.051 0.001 0.001

CP 0.644 0.920 0.748 0.000 0.708 0.928
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3 tscsdep: A New R Package

Among the most significant obstacles to modeling geographical spatial dependence in the

analysis of time-series-cross-sectional data, particularly with unbalanced panels, is creating the

spatial weights matrix, W. For balanced panels with fixed N and T , this task is relatively easy.

One simply pre-Kroenecker-multiplies the spatial weights matrix for a single cross-section by a

T × T identity matrix:

WNT = IT ⊗WN.

Unfortunately, in applied work, it is much more common to have unbalanced panels where T

varies across the sample’s units. This can arise either due to the entry and exit of units from

one’s sample (e.g., the recognition of South Sudan), or data missingness. Consequently, the

cross-sectional weights matrices are time-period specific—in other words, there are multiple cross-

sectional weights matrices associated with a sample. Moreover, because patterns of missingness

vary across variables, sample dimensions vary across different regression models. As such, each

regression will have a unique TSCS weights matrix. This makes accounting for spatial dependence

prohibitively costly.

The package tscsdep was created to make it easy to account for (geographical) spatial de-

pendence when working with TSCS data. It draws heavily from the Cshapes and spatialreg

packages. At the moment, there are two main functions in tscsdep. The first, make ntspmat,

generates a nearest neighbor spatial weights matrix for an unbalanced TSCS sample of countries

observed annually, which was used to estimate a non-spatial linear regression model. The call to

execute the function is

wm <- make_ntspmat(lmobj,ci,yi,k)

In this call, wm stores the output, the weights matrix; lmobj is an object created by the lm

function. This object contains information about the data and regression specification; ci and yi

are names of variables that identify the country name and year for each observation in the sample;

21



and k is the number of nearest neighbors used for the spatial weights. The second function,

ntspreg, re-estimates the original linear regression with a spatial lag using the TSCS weights

matrix created by make ntspmat. The call is

sar <- ntspreg(lmobj,wm)

In this line, sar stores the spatial regression output; lmobj is the same lm object used to create

the TSCS spatial weights matrix, wm, which is also included as the second and final argument in

the function. The package is available at https://github.com/MTSS-Textbook/tscsdep.

3.1 Political Accountability / Infant Mortality Reanalysis

In their forthcoming APSR article, Lührmann, Marquardt and Mechkova (n.d.) develop several

new country-year indices of vertical, horizontal and diagonal political accountability, as well as

an overall index of accountability. Much of their article is devoted to demonstrating the content,

convergent and construct validity of these measures. For construct validity, the authors show

that their overall index of political accountability correlates with infant mortality rates: higher

accountability is associated with lower infant mortality. They estimate four time-series-cross-

sectional regressions using their overall index of political accountability, both in isolation and in

combination with alternative measures of accountability taken from the World Bank and Freedom

House.

In this section, we conduct a brief reanalysis of their first, and probably most important, regres-

sion using our new R package, tscsdep. To illustrate an important feature of the make ntspmat

function, we start by assuming the country names in the Lührmann et al. (n.d.) dataset match

COW country names, which are used as identifiers for the construction of the spatial-weights

matrix.

data<-read.csv("accountability_data_regressions.csv")

reg<-lm(formula = infant ~ Accountability + aid + loggdp + gdp_grow +
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resourcesdep_hm + gini2 + lnpop + urban_cow + violence_domestic +

communist + rx_infant + v2x_corr + as.factor(country_name) + as.factor(year), data = data)

wm <- make_ntspmat_ch(reg,country_name,year,5)

We read the data, estimate the non-spatial linear regression, and then run the make ntspmat

function, hoping to create a nearest neighbor spatial weights matrix, using the five nearest neigh-

bors. Unfortunately, the initial output tells us that the country names are not perfectly matched

in two different ways. In the first two cases, the problem is that the start dates differ between

the dataset and COW. Macedonia enters the dataset in 1993, but CShapes does not have a sep-

arate shapefile for Macedonia until 1994. In the remaining seven cases (except Kosovo), the

problem is with the name, and these need to be corrected before estimating the spatial-lag regres-

sion. For example Burma/Myanmar should be just Myanmar, and Korea, South should be South

Korea. The COW country names are available at https://correlatesofwar.org/data-sets/

cow-country-codes.

===============================================================================

Data Country Name Data Start Year COW Country Name COW Start Year

-------------------------------------------------------------------------------

1 Macedonia 1993 Macedonia 1994

2 Serbia 1983 Serbia 2006

3 Burma/Myanmar 1967

4 Congo, Democratic Republic of 2006

5 Congo, Republic of the 1968

6 Gambia 1975

7 Ivory Coast 1966

8 Korea, South 1960

9 Kosovo 2000

-------------------------------------------------------------------------------

In the next chunk of code, we correct the country names to match COW, using the recode factor

function. In the case of Serbia, we change the name to Yugoslavia for the entire sample even though

CShapes has a separate shapefile for Serbia starting in 2006, the last year of the sample. In the
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case of Macedonia we just need to change the country name to Yugoslavia for 1993. CShapes does

not have a separate shapefile for Kosovo until after the sample period ends, so its country name

is changed to Yugoslavia for the entire sample period.

data<-read.csv("accountability_data_regressions.csv")

data$country_name<-recode_factor(data$country_name,"Burma/Myanmar"="Myanmar")

data$country_name<-recode_factor(data$country_name,"Korea, South"="South Korea")

data$country_name<-recode_factor(data$country_name,"Kosovo"="Yugoslavia")

data$country_name<-recode_factor(data$country_name,"Serbia"="Yugoslavia")

data[data$country_name=="Macedonia" & data$year=="1993",]$country_name<-"Yugoslavia"

data$country_name<-recode_factor(data$country_name,"Ivory Coast"="Cote d’Ivoire")

data$country_name<-recode_factor(data$country_name,"Congo, Democratic Republic of"="Congo, DRC")

data$country_name<-recode_factor(data$country_name,"Congo, Republic of the"="Congo")

data$country_name<-recode_factor(data$country_name,"Gambia"="The Gambia")

reg <-lm(formula = infant ~ Accountability + aid + loggdp + gdp_grow +

resourcesdep_hm + gini2 + lnpop + urban_cow + violence_domestic +

communist + rx_infant + v2x_corr + as.factor(country_name) + as.factor(year), data = data)

wm <- make_ntspmat_ch(reg,country_name,year,5)

After the country names are matched, we re-estimate the regression. Note that this regression

replicates the original analysis in Lührmann et al. (n.d.). Their first infant mortality regression

(MODEL 1 in Figure 8) includes the new overall accountability index and a full set of controls.

Call:

lm(formula = infant ~ Accountability + aid + loggdp + gdp_grow +

resourcesdep_hm + gini2 + lnpop + urban_cow + violence_domestic +

communist + rx_infant + v2x_corr + as.factor(country_name) +

as.factor(year), data = data)

Residuals:

Min 1Q Median 3Q Max
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-35.697 -4.447 -0.134 4.175 54.008

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 177.17484 13.36142 13.260 < 2e-16 ***

Accountability -4.25612 0.35093 -12.128 < 2e-16 ***

aid -0.04820 0.03094 -1.558 0.119342

loggdp -9.55947 0.76112 -12.560 < 2e-16 ***

gdp_grow 0.03271 0.02357 1.387 0.165372

resourcesdep_hm 0.03927 0.02165 1.814 0.069784 .

gini2 -0.06158 0.03090 -1.993 0.046376 *

lnpop -13.87935 1.48460 -9.349 < 2e-16 ***

urban_cow -0.14241 0.02798 -5.090 3.75e-07 ***

violence_domestic 0.35836 0.12857 2.787 0.005339 **

communist 0.95563 1.62036 0.590 0.555382

rx_infant 0.67381 0.01952 34.515 < 2e-16 ***

v2x_corr -2.90670 1.90546 -1.525 0.127221

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 8.695 on 4150 degrees of freedom

(12955 observations deleted due to missingness)

Multiple R-squared: 0.9609,Adjusted R-squared: 0.959

F-statistic: 502.4 on 203 and 4150 DF, p-value: < 2.2e-16

Once we have replicated the original analysis, we call make ntspmat to create the nearest-

neighbor weights matrix (using distance between capital cities to calculate distance). If the country

names are, in fact, matched correctly, the console output will change.

[1] 1960

[1] 70 380 740 290 140 2 750 732 20 220 90 645 325 600 210 95 200 780 390 375 350 820 920 385
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[25] 310

[1] All of your Countries are Matched.

[1] 1961

[1] 70 380 740 290 140 2 92 135 750 732 20 220 90 645 325 600 210 95 616 200 165 780 390 375

[25] 350 820 920 385 310

[1] All of your Countries are Matched.

.

.

.

[1] 2006

[1] 70 452 560 365 339 651 100 290 140 92 771 145 91 432 770 135 625 700 160 475 840 510 800 500

[25] 101 760 439 811 541 790 436 551 438 437 435 516 482 155 94 130 90 645 663 367 450 712 600 95

[49] 640 369 165 371 373 370 471 490 42 372 705 703 812 580 359 517 780 572 702 461 346 355 344 950

[73] 368 343 820 150 360 317 310

[1] All of your Countries are Matched.

The year and COW country codes for the corresponding cross-section will be printed to the

console. When finished, the function make ntspmat returns a list. The first element of the list

is the original dataset. The second element is the desired NT × NT weights matrix. The last

element is a vector of unique country-year identifiers.

In the chunk of code below, we extract the second element of this list, the nearest-neighbor

weights matrix, and run the function ntspreg, which returns a list of output from the function

lagsarlm. The nearest-neighbors weights matrix is automatically row-standardized by ntspreg.

w <- as.matrix(wm[[2]])

sar <- ntspreg(reg,w)

summary(sar)

The results are summarized below.

Call:spatialreg::lagsarlm(formula = formula, data = df, listw = listw,

method = "eigen", zero.policy = TRUE, tol.solve = 1e-11)
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Residuals:

Min 1Q Median 3Q Max

-35.84769 -4.45792 -0.13528 4.17203 53.71579

Type: lag

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 176.385836 13.042802 13.5236 < 2.2e-16

Accountability -4.253048 0.342422 -12.4205 < 2.2e-16

aid -0.048687 0.030190 -1.6127 0.1068100

loggdp -9.534110 0.742749 -12.8362 < 2.2e-16

gdp_grow 0.033456 0.023006 1.4542 0.1458811

resourcesdep_hm 0.037964 0.021135 1.7963 0.0724506

gini2 -0.062058 0.030154 -2.0580 0.0395855

lnpop -13.903421 1.448662 -9.5974 < 2.2e-16

urban_cow -0.141178 0.027306 -5.1702 2.339e-07

violence_domestic 0.366457 0.125541 2.9190 0.0035114

communist 0.921072 1.581146 0.5825 0.5602069

rx_infant 0.672092 0.019065 35.2519 < 2.2e-16

v2x_corr -2.964505 1.859456 -1.5943 0.1108720

Rho: 0.015671, LR test value: 4.5588, p-value: 0.032749

Asymptotic standard error: 0.0072993

z-value: 2.1469, p-value: 0.031805

Wald statistic: 4.609, p-value: 0.031805

Log likelihood: -15488.1 for lag model

ML residual variance (sigma squared): 71.989, (sigma: 8.4846)

Number of observations: 4354

Number of parameters estimated: 206

AIC: 31388, (AIC for lm: 31391)

LM test for residual autocorrelation

test value: 94.809, p-value: < 2.22e-16
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This model only accounts for spatial dependence in the data; temporal dynamics are still

ignored. In this regression, the spatial lag coefficient is positive and statistically significant, sug-

gesting (nearest-neighbor) spatial dependence in the data beyond that captured by the authors’

regional average infant mortality variable (rx infant).

We include our replication of the original results in the first column of Table 1. The estimates

from our reanalysis regression incorporating spatially and temporally lagged dependent–variable

regressors are presented in the second column. The long-run effects of all the variables measured

in levels, the variables included in xit, are provided in the third column. Comparing the results,

it is clear that our concerns were warranted. Comparing the (total) spatial effect in the original

regression which ignores temporal (autoregressive) dynamics and regional common shocks with

our long-run spatial effect, we estimate that the former overstates the true degree of long-run

spatial dependence by nearly 38%. This has consequences. Again, comparing the first and third

columns, we estimate that the effect of political accountability on infant mortality rates is more

double the size of the effect estimated by Lührmann et al. (n.d.).

An alternative strategy to account for regional common shocks is to add spatial lags in first

differences to regression models. Because spatial lags represent autoregression in space—countries

have first, second and third (etc.) order neighbors—there is some added flexibility with respect to

identifying the exact geographical boundaries of shocks, flexibility that does not exist with regional

shock indicator variables. (Spatial lags are ”leaky;” regional indicators are not.) Additionally,

spatial lags can be more parsimonious than regional-period shock indicators because each lag

defines a “neighborhood” for every unit in a sample.

More generally, in spatio-temporal autoregressive distributive lag (STADL) models, right-hand-

side variables that are differenced produce short-run shocks to left-hand-side outcomes, whereas

right-hand-side variables in levels produce long-run effects through temporal multipliers. The

Luuml;hrmann et al. regression includes a de facto spatial lag, country and year fixed effects,

but no temporal dynamics. We also think that regional shocks are plausible. Therefore, in our

28



Table 13: Reanalysis of the Accountability / Infant Mortality Regression
in Lührmann et al. (n.d.)

Dependent variable: Infant Mortality

Level Difference Long Run

Accountability −4.256∗∗∗ −0.197∗∗∗ −9.748
(0.351) (0.038)

Foreign aid −0.048 0.016∗∗∗ 0.771
(0.031) (0.003)

GDP/capita (ln) −9.559∗∗∗ 0.763∗∗∗ 37.74
(0.761) (0.084)

Economic Growth 0.033 −0.019∗∗∗ -0.972
(0.024) (0.003)

Resource dependence 0.040∗ 0.013∗∗∗ 0.661
(0.022) (0.002)

Economic inequality −0.062∗∗ 0.006 0.293
(0.031) (0.003)

Population (ln) −13.879∗∗∗ 0.632∗∗∗ 31.23
(1.485) (0.163)

Urbanization −0.142∗∗∗ 0.023∗∗∗ 1.135
(0.028) (0.003)

Political violence 0.358∗∗∗ −0.016 −0.810
(0.129) (0.014)

Communist 0.956 −0.784∗∗∗ -38.77
(1.620) (0.174)

Infant mortality, regional average 0.674∗∗∗ 0.008∗∗∗ 0.419
(0.020) (0.002)

Political corruption index −2.907∗ −0.293 -14.505
(1.905) (0.205)

Temporal Lag (Level) -0.020∗∗∗

(0.002)
Spatial Lag (Difference) 0.037∗

(0.020)

Observations 4,354 4,312
Fixed Country Effects Yes Yes
Fixed Year Effects Yes Yes

Note: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01

reanalysis, we include a temporal lag and a nearest neighbor spatial lag in first differences. The

reanalysis regression takes the following form:
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yit = xitβ + φyit−1 + ρwi∆yt + fi + gt + εit,

where yit is the outcome for unit i at time t, xit is a 1×k vector of time t exogenous covariates for

unit i, β is a k× 1 vector of coefficients, ρ is the spatial lag coefficient, wi is a unit specific vector

of spatial weights with a zero in the same-unit coordinate, ∆yt is a time t vector of differenced

outcomes, fi is a fixed unit effect, gt is a fixed period effect and εit is an i.i.d. disturbance for

unit i at time t. With some simple algebraic manipulation, the regression can be rewritten with

a differenced outcome. For reasons of convenience related to evaluating the likelihood function,

this is the regression that we estimate:

∆yit = xitβ + (φ− 1)yit−1 + ρwi∆yt + fi + gt + εit.

We estimate the Table 1, column 2 STADL in first differences with the code below.

library (DataCombine)

data<-read.csv("accountability_data_regressions.csv")

# Lag the variable one time unit by ID group

data <- slide(data = data, Var = ’infant’, GroupVar = ’country_id’,

NewVar = ’lag_inf’, slideBy = -1)

data$diff_inf <- data$infant - data$lag_inf

reg<-lm(formula = diff_inf ~ lag_inf + Accountability + aid + loggdp + gdp_grow +

resourcesdep_hm + gini2 + lnpop + urban_cow + violence_domestic +

communist + rx_infant + v2x_corr + as.factor(country_name) + as.factor(year), data = data)

wm2 <- make_ntspmat_ch(reg,country_name,year,5)

w2 <- as.matrix(wm2[[2]])

sar2 <- ntspreg(reg,w2)
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summary(sar2)

The summarized results are

Call:spatialreg::lagsarlm(formula = formula, data = df, listw = listw,

method = "eigen", zero.policy = TRUE, tol.solve = 1e-11)

Residuals:

Min 1Q Median 3Q Max

-8.713635 -0.347462 0.024784 0.351405 27.958425

Type: lag

Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.3920063 1.4866294 -6.9903 2.743e-12

lag_inf -0.0202188 0.0016639 -12.1511 < 2.2e-16

Accountability -0.1970935 0.0382911 -5.1472 2.643e-07

aid 0.0155976 0.0033198 4.6983 2.623e-06

loggdp 0.7625747 0.0840950 9.0680 < 2.2e-16

gdp_grow -0.0191652 0.0025461 -7.5273 5.174e-14

resourcesdep_hm 0.0133679 0.0023253 5.7490 8.979e-09

gini2 0.0059318 0.0033512 1.7700 0.0767242

lnpop 0.6315082 0.1626417 3.8828 0.0001033

urban_cow 0.0229474 0.0030498 7.5243 5.307e-14

violence_domestic -0.0163823 0.0139200 -1.1769 0.2392416

communist -0.7839187 0.1742961 -4.4976 6.872e-06

rx_infant 0.0084794 0.0024326 3.4857 0.0004908

v2x_corr -0.2932679 0.2050119 -1.4305 0.1525758

Rho: 0.036807, LR test value: 3.1803, p-value: 0.074532

Asymptotic standard error: 0.019764

z-value: 1.8623, p-value: 0.062559

Wald statistic: 3.4682, p-value: 0.062559

31



Log likelihood: -5810.532 for lag model

ML residual variance (sigma squared): 0.86673, (sigma: 0.93099)

Number of observations: 4312

Number of parameters estimated: 206

AIC: 12033, (AIC for lm: 12034)

LM test for residual autocorrelation

test value: 5.7551, p-value: 0.016441
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