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This article shows that, for both spatial lag and spatial error models with strongly

connected weight matrices, maximum likelihood estimates of the spatial dependence

parameter are necessarily biased downward. In addition, this bias is shown to be

present in general Moran tests of spatial dependency. Thus, positive dependencies

may often fail to be detected when weight matrices are strongly connected. The anal-

ysis begins with a detailed examination of downward bias for the extreme case of

maximally connected weight matrices. Results for this case are then extended by con-

tinuity to a broader range of (appropriately defined) strongly connected matrices. Fi-

nally, a simulated numerical example is presented to illustrate some of the practical

consequences of these biases.

Introduction

In a recent simulation study, Mizruchi and Neuman (2008) showed that, for spatial

lag (SL) models with strongly connected (high-density) weight matrices, a severe

downward bias is often present in maximum likelihood estimates of the spatial

dependency parameter.1 A similar finding is reported by Farber, Páez, and Volz

(2009) in their simulation analysis of the influence of network topology on tests of

spatial dependencies. Hence, the central purpose of this article is to clarify the

nature of this bias from an analytical perspective. In addition, the same type of bias

is present in both spatial error (SE) models and in the more general Moran test of

spatial dependency. In all cases, this bias implies that significantly positive spatial

dependencies may not be detected when weight matrices are strongly connected.

To establish these results, the analytical strategy employed considers the ex-

treme case of maximally connected weight matrices and obtains exact results for

this case. The rest follows from simple continuity considerations. To avoid repe-

tition, the analytical development of spatial regression models here focuses on SL

models. Parallel results for SE models are simply sketched.
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We begin with the following a standard SL model for n spatial units:

y ¼ rWy þ Xbþ e ; e � Nð0;s2InÞ ð1Þ

where y 2 Rn is some variable of interest, and X ¼ ½1n; x1; . . . ; xk � 2 Rn�ðkþ1Þ repre-

sents a relevant set of k explanatory variables, with 1n ¼ ð1; . . . ; 1Þ0 denoting the unit

n-vector (corresponding to the intercept term in this linear model). (Throughout the

following analysis X is always assumed to have full column rank, k11, so that ðX 0
XÞ�1 exists.) The unknown parameters of the model include the vector of beta co-

efficients b ¼ ðb0; b1; . . . ; bkÞ0, the variance s2 of each residual in e, and the spatial

dependence parameter r, which is of primary interest in the present analysis.

Also of major interest is the structure of the spatial weight matrix W. For our

analysis, it is convenient to begin by characterizing these matrices in the following

way. First, we choose a fixed positive scalar, b, to serve as an upper bound on weight

values. With respect to this bound, an n-square matrix, W ¼ ðwij : i; j ¼ 1; . . . ; nÞ, is

designated as a weight matrix if and only if (i) wii ¼ 0 and (ii) 0 � wij � b for all

i; j ¼ 1; . . . ; n. As usual, condition (i) specifies that dependencies are defined only

between distinct spatial units. Condition (ii) can be thought of as a normalization

condition that allows each weight, wij, to be interpreted as the ‘‘degree of connec-

tivity’’ between i and j, where wij ¼ b implies a maximal degree of connectivity. This

is particularly appropriate for applications of model (1) to social networks among n

agents. For the present, the bound b only serves as a convenient conceptual device

and can be set equal to one without loss of generality.2 However, the question of

appropriate matrix normalizations for the estimation of r is of some importance and

is addressed later.

If the class of all n-square weight matrices is denoted by Wn � Rn�n (where

the fixed scale parameter b is taken to be implicit), then the relevant geometry of

this set can be depicted for the n 5 2 case as follows. Observe that each matrix

W 2Wn is of the form

W ¼
0 w12

w21 0

� �
ð2Þ

and thus is fully characterized by the 2-vector ðw12;w21Þ. Hence, the entire class

W2 is seen to be equivalent to the points in the square ½0; b�2 (Fig. 1). Here, the

lower left-hand corner corresponds to the minimally connected weight matrix W�
with all zero components, and the upper right-hand corner corresponds to the

maximally connected weight matrix W �,3 with all off-diagonal elements equal to

b. This depiction for the 2-by-2 case clarifies that W� and W � are the two natural

extreme weight matrices in Wn for all n.4 Because W� corresponds to complete

statistical independence in model (1), attention naturally focuses on those weight

matrices, W 2Wn, that are ‘‘sufficiently close’’ to W� to inherit all of its desirable

large-sample properties (such as consistency and asymptotic normality of param-

eter estimates). Thus, most of the literature focuses on matrices in the lower left-

hand neighborhood of Fig. 1.5
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In this context, the distinguishing feature of this analysis is its focus on the up-

per right-hand neighborhood of Fig. 1, which for the moment we loosely designate

as ‘‘strongly connected’’ weight matrices.6 The central objective is not only to show

that such weight matrices fail to share the desirable properties of the independence

case, but also to determine the exact nature of this failure. Of particular interest is

the severe downward bias in maximum likelihood estimates of the spatial depen-

dency parameter r.

To establish this result in a self-contained manner, we begin with a detailed

development of the maximum likelihood estimation problem for the SL model in

the next section.7 This is followed in the next section by an analysis of the max-

imally connected case, W �, in the upper right-hand corner. In the section, the re-

sults for this case are extended by continuity to all matrices ‘‘sufficiently close’’ to

W � in an appropriate sense and are illustrated by numerical examples. In the next

section, these results are shown to be essentially the same for SE models. Finally,

the next section shows that strong connectivity also has consequences for Moran

diagnostic tests of spatial independence.

Maximum likelihood estimation for SL models

Model (1) implies that y is multinormally distributed and, in particular, that, for any

given data ðy;XÞ, the log-likelihood function for parameters ðb;s2; rÞ takes the

following form:

Lðb;s2; rjy;XÞ ¼ const� n

2
lnðs2Þ þ ln j detðIn � rW Þj

� 1

2s2
ððIn � rW Þy � XbÞ0ððIn � rW Þy � XbÞ

ð3Þ

where In is the n-square identity matrix, and where all terms not involving the pa-

rameters are subsumed in the constant term, const. As with all generalized linear

b

b

•

• W *

W*

Figure 1. 2 � 2 weight matrices.
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models, one proceeds by first fixing the covariance parameters (in this case r) and

then maximizing the likelihood function in b and s2 to produce the well-known

closed-form conditional estimates:

b̂slðrÞ ¼ ðX 0XÞ
�1X 0ðIn � rW Þy; and ð4Þ

ŝ2
slðrÞ ¼ ð1=nÞððIn � rW Þy � X b̂slðrÞÞ0ððIn � rW Þy � Xb̂slðrÞÞ ð5Þ

where the subscript ‘‘sl’’ denotes the SL model. These are then substituted into (3) to

yield the concentrated likelihood function, Lsl, for r.8 After some simple canceling

of terms, this function takes the form:

Lslðrjy;XÞ ¼ const þ ln jdetðIn � rW Þj � ðn=2Þ ln½ŝ2ðrÞ� ð6Þ

One then maximizes this function to obtain the maximum likelihood estimate

r̂n of r and then substitutes this value into equations (4) and (5) to obtain corre-

sponding maximum likelihood estimates b̂n ¼ b̂slðr̂nÞ and ŝ2
n ¼ ŝ2

slðr̂nÞ of b and s2,

respectively. However, our primary interest here is in r̂n itself.

To analyze the function Lsl, one can make further reductions as follows (see

also Anselin 1988, section 12.1.1). First let

M ¼ In � XðX 0XÞ�1X 0 ð7Þ

denote the orthogonal projection onto the complement of the span of X, which by

construction satisfies M ¼ M0,

MX ¼ X � XðX 0XÞ�1X 0X ¼ X � X ¼ 0 ð8Þ

and

MM ¼ ðIn � XðX 0XÞ�1X 0ÞðIn � XðX 0XÞ�1X 0Þ ¼ In � XðX 0XÞ�1X 0 ¼ M ð9Þ

Substitution of (4) and (7) into (5) then yields the more compact form of the

conditional variance estimate:

ŝ2
slðrÞ ¼ ð1=nÞð½In � XðX 0XÞ�1X 0�ðIn � rW ÞyÞ0ð½In � XðX 0XÞ�1X 0�ðIn � rW ÞyÞ

¼ ð1=nÞðy 0ðIn � rW Þ0MðIn � rW ÞyÞ
ð10Þ

This in turn allows the concentrated likelihood in (6) to be written as

Lslðrjy;XÞ ¼ const þ ln j detðIn � rW Þj � ðn=2Þ ln½y 0ðIn � rW Þ0M
ðIn � rW Þy� ð11Þ

where the term �ðn=2Þ lnð1=nÞ has now been absorbed into the constant.

Further reduction is possible by observing that, if the eigenvalues of W are

denoted by lðW Þ ¼ fli : i ¼ 1; . . . ; ng, then the corresponding eigenvalues of ðIn �
rW Þ are well known to be given by lðIn � rW Þ ¼ f1� rli : i ¼ 1; . . . ; ng. To

avoid complications in the following analysis, we restrict our attention to weight
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matrices, W, with real eigenvalues (which, most importantly, includes all W that

either are symmetric or are row normalizations of symmetric matrices). In addition,

the maximum eigenvalue, lmaxðW Þ, of W is also assumed to be positive.9 (In par-

ticular, this includes all nonzero symmetric weight matrices.) Hence, we now focus

on the following subset of weight matrices:

Wþ
n ¼ fW 2Wn : lðW Þ is real; and lmaxðW Þ > 0g ð12Þ

Because the determinant of any matrix is the product of its eigenvalues (Horn and

Johnson 1985, theorem 1.2.12), it follows that, for every W 2Wþ
n ,

detðIn � rW Þ ¼
Y

i
ð1� rliÞ ) ln j detðIn � rW Þj ¼

X
i
ln j1� rli j ð13Þ

as long as each term 1� rli on the right-hand side is nonzero. This of course re-

quires further restrictions on r. To specify these restrictions, we first note that,

because the trace of every matrix is the sum of its eigenvalues, it follows that

X
i
li ¼ trðW Þ ¼

X
i
wii ¼ 0 ð14Þ

for all W 2Wn. But because lmaxðW Þ > 0 for all W 2Wþ
n , this implies that lmin

ðW Þmust be negative. These observations together imply that, for any W 2Wþ
n , all

terms 1� rli in (13) will be positive if the admissible values of r are restricted to

the open interval

½W � ¼ 1

lminðW Þ
;

1

lmaxðW Þ

� �
ð15Þ

Hence, we now restrict r to the interval [W]. Under this restriction, (13) allows

(11) to be reduced to the explicit form of

Lslðrjy;XÞ ¼ const þ
X

i
ln j1� rli j � ðn=2Þ ln½y 0ðIn � rW Þ0MðIn � rW Þy� ð16Þ

which is more readily analyzed (and computed).

At this point one typically proceeds by observing that, because ln j detðIn �
rW Þj ¼ �1 on the boundaries of [W], it is reasonable to assume that Lsl has a well-

defined differentiable maximum in the open interval [W]. This will be true as long

as the second term in (16) is bounded above. The following assumption ensures this

condition:

MðIn � rW Þy 6¼ 0 for all r 2 ½W � ð17Þ

To interpret this assumption, observe that model (1) can be equivalently written

as ðIn � rW Þy ¼ Xbþ e, where ðIn � rW Þy represents the value of y after SL effects

have been accounted for. If this variable is designated as the effective value of y,10

yW ðrÞ ¼ ðIn � rW Þy ð18Þ
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in model (1), then as a parallel to classical regression, it is here assumed that none

of the effective values fyW ðrÞ : r 2 ½W �g of the given data vector y is perfectly fitted

by X (i.e., lies in the span of X). We designate data sets (y, X) satisfying (17) as

W-regular. Notice that for r5 0 this implies the usual regularity condition that

My 6¼ 0. Data (y, X) satisfying only this (classical regression) condition is simply

said to be regular.

Biased estimation for the maximally connected case in SL models

Given the simple form of the concentrated likelihood function Lsl in (16), one can

search for a maximum, r̂n, in the interval [W] (typically by standard line search

procedures). However, for the maximally connected case, W � 2Wþ
n , this maxi-

mization procedure is doomed to fail. Indeed, the main outcome of this section is

that, even for regular data sets, Lsl is always unbounded on ½W ��. To establish this,

we begin by analyzing the properties of W �. First, observe that since the n-square

unit matrix is constructible as the outer product of 1n10n, the maximally connected

weight matrix W � 2Wþ
n can be written as

W � ¼ b � ð1n10n � InÞ ¼

0 b � � � b

b 0 ..
.

..

. . .
.

b

b � � � b 0

0
BBBBB@

1
CCCCCA

ð19Þ

With this explicit form, the following shows that the eigenvalues of W � are com-

putable in closed form (all proofs are in Appendix A):

Lemma 1. For all b40, the eigenvalues of W � in (19) are given by

lðW �Þ ¼ f�b; . . . ;�b; bðn � 1Þg ð20Þ

where the eigenvalue � b has multiplicity n� 1.

The second (and most important) property of maximally connected weight

matrices is the following identity:

Lemma 2. If M is the orthogonal projection matrix in (7) associated with any data

matrix X ¼ ½1n; x1; . . . ; xk � for model (1), then

M �W � ¼ �b �M ¼W � �M ð21Þ

An additional consequence of this result is

Lemma 3. Every regular data set, (y, X), is W �-regular.

With these properties, we are now ready to establish our main result, namely

that Lsl is unbounded on ½W ��. In particular, we show that Lsl increases without
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bound as r approaches the lower boundary of ½W ��. Observe from (15) and (20)

that this lower boundary point, r�, is given by

r� ¼ 1=lminðW �Þ ¼ �1=b ð22Þ

With this definition we now have

Proposition 1. If W ¼W � in model (1), then for all regular data sets (y, X) and all

decreasing sequences (rm) in ½W ��, with limm!1 rm ¼ r�,

lim
m!1

Lslðrmjy;XÞ ¼ 1 ð23Þ

From a formal viewpoint, Proposition 1 implies that no maximum likelihood

estimator of r exists for model (1) when W ¼W �.11 This finding is somewhat sur-

prising, given that the existence of maximum likelihood estimators for model (1) is

generally assumed to hold as long as W 2Wn and r 2 ½W �. Moreover, it is inter-

esting that, from a practical viewpoint, such a failure would probably not even be

detected by standard software. Indeed, one would typically observe that the line-

search algorithm has ‘‘converged’’ to some value of r very close to r�.
To gain further insight, this finding can be illustrated by the concentrated like-

lihood function shown in Fig. 2 (corresponding to the numerical simulation exam-

ple presented below in the ‘‘Consequences for strongly connected weight matrices

in SL models’’ section [for a sample size of n 5 50]). The ‘‘First term’’ and ‘‘Second

term’’ shown in Fig. 2 correspond, respectively, to the log-determinant expression

and the log-quadratic expression in the concentrated likelihood function (16) above

(see also expressions [A8] and [A9] in Appendix A). Notice that the log-determinant

term is always well behaved, because it is a sum of simple concave functions,

lnð1� rliÞ, on ½W ��. Hence, the culprit here is the log-quadratic term, which in the

present case not only diverges to þ1 at r� but does so at a faster rate than the

corresponding divergence of the log-determinant to �1.

Before examining the practical consequences of this result for strongly con-

nected weight matrices, we give an alternative statement of Proposition 1 that also

proves useful for applications (as discussed further in the next section). Recall that

our basic regularity assumption on data (y, X) was designed to avoid cases where

some effective y-value, yW ðrÞ, was perfectly fitted by the data, X, in model (1). We

now show that Proposition 1 arises from the fact that for every data set (y, X) in

model (1), X must yield a perfect fit to the ‘‘effective’’ y-value yW � ðr�Þ on the lower

boundary of ½W ��. This depends critically on the presence of an intercept term in

model (1) (as is also apparent from the proof of Lemma 2 in Appendix A). This

intercept term can now be made explicit by rewriting model (1) as

y ¼ rWy þ b01n þ ~X~bþ e; e � Nð0;s2Þ ð24Þ

where ~X ¼ ½x1; . . . ; xk � and ~b ¼ ðb1; . . . ; bkÞ0. For the particular case of W �, it then

follows that, for any choice of ~X,
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y ¼ rW �y þ b01n þ ~X~bþ e

) ðIn � rW �Þy ¼ b01n þ ~X~bþ e

) yW � ðrÞ ¼ b01n þ ~X~bþ e

ð25Þ

With this notation, recall from Lemma 3 and expression (17) that for any regular

data set ðy;XÞ ¼ ðy; ½1n; ~X�Þ there exists no r 2 ½W �� such that the effective value

yW � ðrÞ is a perfect fit to X; that is,

yW � ðrÞ ¼ b0ðrÞ1n þ ~X~bðrÞ ð26Þ

for some choice of ½b0ðrÞ; ~bðrÞ�. In spite of this, we now show that condition (26)

must always hold at the lower boundary value r�, of ½W ��12:

Proposition 2. If W ¼W � in model (1), then, for any data set (y, X),

yW � ðr�Þ ¼ b0ðr�Þ � 1n þ ~X~bðr�Þ ð27Þ

where b0ðr�Þ ¼ 10ny and ~bðr�Þ ¼ 0.

Examining this result in terms of perfect fits provides information about the bias

of other parameter estimates. For when r̂n 	 r�, expression (27) also suggests that

b̂0 	 10ny and b̂j 	 0 for all j ¼ 1; . . . ; k. Moreover, because a perfect fit necessarily
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Figure 2. Concentrated likelihood function for W�.
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implies zero variance for residuals, this suggests that ŝ2 	 0.13 The practical con-

sequences of these findings are explored in the next section.

Consequences for strongly connected weight matrices in SL models

The preceding results show that, for the extreme case of maximally connected ma-

trices, we can obtain an exact analytical formulation of the bias inherent in max-

imum likelihood estimates for SL models. This in turn suggests that such bias should

be inherited by matrices W 2Wþ
n that are ‘‘close’’ to W � in some appropriate

sense. To do so, we begin by endowing Wþ
n with a matrix norm that will allow an

explicit measure of ‘‘closeness.’’ Here there are many choices. For example, the ‘1-

norm of any matrix A ¼ ðaijÞ 2 Rn�n is Ak k1¼
P

ij jaij j, and the ‘2-norm (Euclidean

norm) of A is Ak k2 ¼
P

ij a2
ij

� �1=2
.14 But for weight matrices W 2Wþ

n , a more nat-

ural choice is the following scaled version of the ‘1-norm, which we now designate

as the relative connectivity norm15:

Wk krc ¼
Wk k1

W �k k1

¼ 1

b � nðn � 1Þ
X

ij
wij ¼

1

nðn � 1Þ
X

ij
ðwij=bÞ ð28Þ

If ðwij=bÞ denotes the relative connectivity between units (agents) i and j, then

this is simply the average of these relative connectivities over all distinct (i, j) pairs.

In the case of binary matrices W 2Wþ
n , this easily reduces to the graph-theoretical

notion of average link density. Given this norm (or any other matrix norm), the

induced distance between W and W � is given by

W �W �k krc ¼
1

b � nðn � 1Þ
X

ij
jwij � bj ¼ 1

nðn � 1Þ
X

ij
½1� ðwij=bÞ� ð29Þ

The discussion thus far has not considered the actual magnitude of r. All that

has been required for a given weight matrix, W, is that these values lie in the open

interval [W] of expression (15) and that this interval contains zero (so that both

positive and negative values of r are always possible). Further insight can be gained

by evaluating this interval in specific cases. The numerical illustration below uses a

sample of size n 5 50. By setting the bound at b 5 1, it follows from Lemma 1 that

for the maximally connected matrix W � 2Wþ
50 we obtain the values

lminðW �Þ ¼ �1 andlmaxðW �Þ ¼ 49. Thus, the corresponding bounds on r for this

case are

r 2 ð�1=b; 1=bðn � 1ÞÞ ¼ �1;
1

49

� �
	 ð�1; 0:02Þ ð30Þ

which, from a practical viewpoint, offer only a narrow range for positive spatial

dependencies. However, because positive dependencies are by far the most com-

mon in practice, it seems most prudent to choose b to yield a normalized range of

positive values. A natural choice here is to set b ¼ 1=ðn � 1Þ, so that

lmaxðW �Þ ¼ bðn � 1Þ ¼ ðn � 1Þ=ðn � 1Þ ¼ 1 ð31Þ
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This will ensure that the interval ½0; 1Þ of nonnegative r values used for most

applications always lies in ½W ��. For n 5 50 we then have

½W �� ¼ ð�1=b; 1Þ ¼ ð�ðn � 1Þ; 1Þ ¼ ð�49; 1Þ ð32Þ

More generally, this normalization implies that16

½0; 1Þ � ½W �for all W 2Wþ
n ð33Þ

So this same interval of r values is available for every choice of W 2Wþ
n .17 Given

this normalization, the objective of this section is to extend the bias results for

maximally connected weight matrices W � in Proposition 1 to all weight matrices,

W 2Wþ
n , that are strongly connected in the sense that they are ‘‘sufficiently close’’

to W � in the relative connectivity norm. To do so, we employ the following ad-

ditional conventions. First, for any given W 2Wþ
n and data set (y, X) for model (1),

let r̂W ðy;XÞ denote the maximum likelihood estimator of r. As pointed out above,

this estimator can fail to exist even when (y, X) is W-regular. But for weight matrices

W close to W � (in relative connectivity), if (y, X) is W-regular, then a differentiable

maximum, r̂W ðy;XÞ, fails to exist only when Lsl is unbounded at the lower bound-

ary of [W]. In such cases, we set r̂W ðy;XÞ equal to this lower boundary, so that

r̂W ðy;XÞ can be treated as a well-defined value for each W. Next, to quantify the

possible bias of these estimates, we focus only on the most important case of pos-

itive dependencies in model (1), that is, r > 0,18 and quantify various degrees of

underestimation by inequalities of the form,

r̂W ðy;XÞ < r=ð1þ aÞ ð34Þ

where parameter a > 0 can be interpreted as a bias factor. For example, a bias

factor of a5 1 implies that r̂W ðy;XÞ is less than half the true value of r. More

generally, higher bias factors correspond to a more severe underestimation of r.

With these conventions, we now have the following consequence of Proposition 1:

Proposition 3. For any regular data set (y, X) with n 
 3 and any given value r0 2
ð0; 1Þ of the spatial dependency parameter for model (1), there exists for each

choice of bias factor a 2 ð0; 1Þ a sufficiently small e ¼ eða; r0; y;XÞ > 0 such that

for all W 2Wþ
n ,

W �W �k krc < e) r̂W ðy;XÞ < r0=ð1þ aÞ ð35Þ

In other words, for any degree of bias a > 0, there is some threshold level of

‘‘strong connectivity,’’ W �W �k k < e, which is sufficient to ensure this degree of

bias. As with all such continuity results, however, Proposition 3 still leaves open the

question of how strong this connectivity must be in order to see a substantial effect.

While such a question can only be answered definitively by extensive simulations,

it is nonetheless possible to illustrate the potential significance of these results by

means of a typical example.19
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Here we set n 5 50, k 5 2, and construct x-data (x1, x2) by simulating two

uniformly distributed random vectors, so that X ¼ ½150; x1; x2�. Model (1) is then

parameterized with b ¼ ðb0; b1; b2Þ0 ¼ ð1; 2; 3Þ and standard deviation s5 1. Again

for the sake of illustration, the single value r5 0.5 was chosen to represent

(substantial) positive spatial dependency in model (1). To allow an average-link-

density interpretation of the matrix norm in (40), only symmetric binary weight

matrices were used. A number of such matrices W with different average link

densities, d ¼ Wk krc2 ð0; 1Þ, were randomly sampled. In particular, the values d 2
f0:30; 0:50; 0:80; 0:90; 0:95; 0:99g were chosen for study, and for each such d a

single matrix, WðdÞ 2Wþ
n , was randomly sampled by independently assigning wij

¼ 1 with probability d and wij ¼ 0 otherwise.20

To make the results at different density levels more comparable, each matrix

Wd was normalized in the same manner as W �, by dividing Wd by its maximum

eigenvalue. This rescaling ensures that the positive values of r in each simulated

model are exactly the same, namely, r 2 ð0; 1Þ.21 For each of these matrices, 1,000

y-vectors were then simulated from model (1), and the corresponding maximum

likelihood estimates fr̂d ðsÞ : s ¼ 1; ::; 1000g were computed.22 Perhaps the sim-

plest way to summarize these results is to compare the sample mean values of r̂d for

each of these average link densities with the true value, r ¼ 0:50, as in column 2 of

Table 1.

As expected, one sees underestimation in all cases, with steadily increasing

severity for higher densities. For comparison, the maximally connected case, d 5 1,

has been added to show that this extreme case is vastly worse than all others. The

continuity properties in Proposition 3, however, are still evident. Underestimation

becomes quite severe as average link density increases. Note also that in Table 1

the corresponding r-intervals, [Wd], in (15) above are given in column 4 (column 3

is discussed below).

To provide a fuller comparison, selected histograms of fr̂d ðsÞ : s ¼ 1; ::; 1000g
are shown for the cases d ¼ 0:50; 0:80; 0:90; 0:99 in Fig. 3.23 Here the true value,

r ¼ 0:50, is indicated by a bold arrow in each case to facilitate the visual

comparison of these estimates. So at average-link-density levels of at least 80%

(d 
 0:80), there is a substantial downward bias in r estimates. Another way to see

Table 1 Mean Estimates of r

Average link density Mean r̂ for SL models Mean r̂ for SE models r-interval

0.30 0.481 0.195 (� 2.49, 1)

0.50 0.454 � 0.038 (� 3.51, 1)

0.80 0.369 � 0.801 (� 6.31, 1)

0.90 0.168 � 1.880 (� 9.02, 1)

0.95 0.033 � 2.281 (� 10.7, 1)

0.99 � 0.830 � 6.363 (� 18.9, 1)

1.00 � 8.999 � 48.999 (� 49.0, 1)
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this is to consider the fraction of estimated values that are significantly different

from zero in the standard two-sided test (using asymptotic z values).24 For a true

value of r ¼ 0:50, only the upper 42% of sample estimates at d 5 0.80 are

significantly different from zero. When the average link density is increased to

d 5 0.90, this drops to o15%. Such significance differences will be investigated

further in the next section on ‘‘Extension to SE models.’’

Finally, recall from the discussion following Proposition 2 that this under-

estimation of r has consequences for the bias of other parameter estimates. While it

is difficult to place definitive magnitudes on the degree of these biases, they can at

least be illustrated for the simulations of model (1) above. Here the mean estimates

for all parameters are shown in Table 2 (where the means for r̂ have been repeated

from Table 1).

Recall from Proposition 2 that, for the ‘‘perfect fit’’ case in the last row of Table

2, one would predict the intercept coefficient b̂0 	 10ny. In the present case, the

mean value of 10ny is about 351, which is in clear agreement with Table 2. Hence,

d = 0.90
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Figure 3. Histograms of r estimates.
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for strongly connected weight matrices this results in extreme overestimation of b0

in the present case. Note that, while the limiting estimates of b ¼ ðb1; b2Þ0 and s2 in

Table 2 also agree with the zero values predicted by Proposition 2, these biases

seem to disappear much more rapidly as link density decreases. However, even a

slight downward bias in ŝ2 (and hence ŝ) can have potentially serious conse-

quences for testing and, in particular, can lead to erroneous significance of beta

parameters.

Extension to SE models

These results demonstrate that strong connectivity of weight matrices can lead to

severe bias in the estimation of spatial dependencies in SL models. It is thus natural

to ask whether spatial error models exhibit similar behavior. Our main result shows

that for spatial dependence parameters the bias properties of these two models are

essentially identical. To establish this, we begin by formulating the SE model and

sketching the parallel maximum likelihood estimation problem for this model. As a

parallel to model (1), the SE model25 for n spatial units is defined as

y ¼ Xbþ u; u ¼ rWu þ e; e � Nð0;s2InÞ ð36Þ

where now the spatial dependence parameter r and the spatial weight matrix W

characterize possible spatial dependencies among the residuals rather than in the

dependent variable y.26 If one solves for u and writes this model in reduced form as

y ¼ Xbþ ðIn � rW Þ�1e; e � Nð0;s2InÞ ð37Þ

it becomes clear that r and W directly influence the covariance structure of the

residuals e. Again y is multinormally distributed, where the log-likelihood function

for parameters ðb;s2; rÞ in (3) now takes the form

Lðb;s2; rjy;XÞ ¼ const � n

2
lnðs2Þ þ ln j detðIn � rW Þj

� 1

2s2
ðy � XbÞ0ðIn � rW Þ0ðIn � rW Þðy � XbÞ

ð38Þ

Table 2 Mean Values of Parameter Estimates for the Spatial Lag Model

Average link

density

Mean

r̂ðr ¼ 0:5Þ
Mean

b̂0ðb0 ¼ 1Þ
Mean

b̂1ðb1 ¼ 2Þ
Mean

b̂2ðb2 ¼ 3Þ
Mean

ŝ2ðs2 ¼ 1Þ

0.30 0.481 1.138 1.978 3.003 0.92887

0.50 0.454 1.336 1.946 2.9973 0.92644

0.80 0.369 1.942 1.922 3.0143 0.91802

0.90 0.168 3.384 1.944 2.9201 0.91908

0.95 0.033 4.302 1.985 2.9209 0.90547

0.99 � 0.830 10.330 1.994 3.012 0.89564

1.00 � 48.999 351.020 0.00004 0.00006 3.8e–010
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The parallel between (3) and (38) is even clearer when one solves for the con-

ditional estimates of b and s2 given r (with ‘‘se’’ denoting the SE model):

b̂seðrÞ ¼ ½X 0ðIn � rW Þ0ðIn � rW ÞX ��1X 0ðIn � rW Þ0ðIn � rW Þy ð39Þ

ŝ2
seðrÞ ¼ ð1=nÞ½y � X b̂seðrÞ�

0ðIn � rW Þ0ðIn � rW Þ½y � Xb̂sarðrÞ� ð40Þ

and substitutes these into (38) to obtain the concentrated likelihood function, Lse,

for r. Again, after canceling terms, this function reduces to

Lseðrjy;XÞ ¼ const þ ln j detðIn � rW Þj � ðn=2Þ ln½ŝ2ðrÞ� ð41Þ

which is identical in form to (6).27 Hence, these concentrated likelihood functions

differ only with respect to their corresponding conditional variance estimates in (5)

and (40). However, for the special case of maximally connected weight matrices,

W �, these conditional variance estimates are identical, as we now show.

We begin with the following preliminary result on a certain class of orthogonal

projections, which are exemplified by the key projection XðX 0XÞ�1X 0, embodied in

expression (7) for M. If for any matrix A 2 Rn�k of full column rank k � n, we let

PA ¼ AðA0AÞ�1A0 denote the orthogonal projection of Rn�k into the span of A (so

that, by definition, PAA ¼ A), then we have the following useful condition for

equality between such projections:

Lemma 4. For any matrices A;B 2 Rn�k of full column rank,

PA ¼ PB3PAB ¼ B ð42Þ

As shown in Appendix A, this result yields the following key identity between

SL models (1) and SE models (36) for the case of maximally connected weight

matrices.

Proposition 4. If W ¼W � in models (1) and (36), then the concentrated likelihood

functions Lsl and Lse are identical for all r 2 ½W ��.

In particular, Proposition 4 shows that for maximally connected weight matri-

ces, W �, the maximum likelihood estimates of r in corresponding SL and SE models

must always be identical. This in turn implies that Proposition 1 must hold in tact if

the SL model in (1) is replaced by the SE model in (36). Hence, the same type of

continuity argument in Proposition 2 can be used to show that the spatial depen-

dency parameter r in SE models will be underestimated for strongly connected

weight matrices.

Rather than repeat such arguments here, we simply report the corresponding

estimation results for the SE model based on the same data X, parameters ðb;s2; rÞ,
and weight matrices Wd ; d 2 f0:30; 0:50; 0:80; 0:90; 0:95; 0:99; 1:00g used above

in the section on ‘‘Biased estimation for the maximally connected case in SL mod-

els.’’ The results for r displayed in column 3 of Table 1 show that, as predicted by
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Proposition 4, these estimates converge to the same extreme value as d approaches

unity. However, it is also clear that (at least in this particular example) the under-

estimation of r is even more severe than for the SL model above.

The results for other parameter estimates are exhibited in Table 3. Notice first that

all mean beta estimates appear to be remarkably accurate—even in the maximally

connected case. This is explained by the well-known fact that, for the SE model, b̂ is

always an unbiased estimator of b for a correctly specified model, because

Eðb̂jXÞ ¼ ½X 0ðIn � rW Þ0ðIn � rW ÞX ��1X 0ðIn � rW Þ0ðIn � rW ÞEðyjXÞ
¼ ½X 0ðIn � rW Þ0ðIn � rW ÞX ��1X 0ðIn � rW Þ0ðIn � rW ÞXb ¼ b

ð43Þ

However, in the extreme case of maximal connectivity these estimates are, in

fact, completely unstable (as can be seen by the dependency of b̂ on r̂ in the con-

ditional beta estimator of (39)). In particular, if we set

r̂n ¼ 1=lminðW �Þ ¼ �1=b ð44Þ

in this extreme case, and let Br̂n
¼ In � r̂nW �, then

Br̂n
¼ In � ð�1=bÞ½bð1n10n � InÞ� ¼ 1n10n ð45Þ

together with 10n1n ¼ n, implies that

b̂seðr̂nÞ ¼ ðX 0B0r̂n
Br̂n

XÞ�1X 0B0r̂n
Br̂n

y ¼ ðX 01n10nXÞ�1X 01n10ny ð46Þ

Hence, if there is at least one explanatory variable other than the intercept (i.e.,

if k 
 1), then the matrix X 01n10nX is singular, and the inverse in (46) does not exist.

In practice, however, what typically happens is that estimation algorithms converge

to values close to �1=b, which will yield well-defined answers. In the case illus-

trated above, where �1=ð1=49Þ ¼ �49, even values of � 48.999 continue to pro-

duce reasonable-looking estimates on average.

Consequences for Moran tests of spatial autocorrelation

Aside from the above consequences for spatial regression models, such as SL and

SE, strong connectivity of weight matrices has broader implications for diagnostic

Table 3 Mean Values of Parameter Estimates for the Spatial Error Model

Average link

density

Mean

r̂ðr ¼ 0:5Þ
Mean

b̂0ðb0 ¼ 1Þ
Mean

b̂1ðb1 ¼ 2Þ
Mean

b̂2ðb2 ¼ 3Þ
Mean

ŝ2ðs2 ¼ 1Þ

0.30 0.195 1.064 2.010 2.939 0.937

0.50 � 0.038 1.040 1.960 2.958 0.933

0.80 � 0.801 0.956 2.039 2.039 0.904

0.90 � 1.880 0.997 2.011 3.006 0.864

0.95 � 2.281 0.998 1.994 3.037 0.823

0.99 � 6.363 1.047 1.945 3.032 0.706

1.00 � 48.999 1.025 1.985 2.999 0.159
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analyses of spatial autocorrelation. This is most evident in the single most widely

used test for spatial autocorrelation, namely the Moran test. In particular, consider

the null hypothesis of independence (r5 0), under which both SL and SE models

reduce to the standard linear model:

y ¼ Xbþ e; e � Nð0;s2InÞ ð47Þ

If one constructs the standard maximum likelihood (ordinary least squares) estimate,

b̂ ¼ ðX 0XÞ�1X 0y ð48Þ

of b under this hypothesis and forms the corresponding vector of residual estimates,

ê ¼ y � ŷ ¼ y � Xb̂ ð49Þ

then for any given candidate choice of a spatial weight matrix W the associated

Moran statistic IW is defined by (see, e.g., Anselin 1988, section 8.1.1)

IW ¼ aW
ê0W ê
ê0ê

ð50Þ

where the positive constant aW ¼ n= Wk k1¼ n=
P

ij wij plays no substantive role in

the analysis to follow. This can be expressed in a more convenient form (again fol-

lowing Anselin) by noting from (48) and (49) that

ê ¼ y � XðX 0XÞ�1X 0y ¼ ½In � XðX 0XÞ�1X 0�y ¼ My ð51Þ

and hence from (9) that IW can be equivalently written as

IW ¼ aW
y 0MWMy

y 0My
ð52Þ

Under the hypothesis of independence in (47), the mean and variance of IW are

well known to be given by Cliff and Ord (1981, section 8.3) and Anselin (1988,

section 8.1.1).

EðIW Þ ¼
aW trðMW Þ
n � ðk þ 1Þ ð53Þ

and

varðIW Þ ¼
ðaW Þ2ftrðMWMW 0Þ þ trðMWMW Þ þ ½trðMW Þ�2g

½n � ðk þ 1Þ� � ½n � ðk � 1Þ� � ½EðIW Þ�2 ð54Þ

In this setting, our main result shows that, for maximally connected weight

matrices, W �, this Moran statistic is degenerate.28 In particular it is completely

concentrated at the mean, EðIW � Þ, and hence can never detect spatial autocorre-

lation. To establish this result, we note from (52) that this statistic is only meaningful

for data sets (y, X) with y 0My 6¼ 0. However, because y 0My ¼ 03My ¼ 0 (as

shown in Lemma 3), this is equivalent to the condition that My 6¼ 0. Hence, for

purposes of this section we again assume regularity of (y, X). In addition, we employ

the normalization convention b ¼ 1=ðn � 1Þ for W � so that lmaxðW �Þ ¼ 1. Finally,
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for each regular data set (y, X), let IW (y, X) denote the corresponding sample value

of IW in (52). With these conventions, we have the following result:

Proposition 5. For all regular data sets (y, X),

IW � ðy;XÞ ¼ EðIW � Þ ð55Þ

This result implies that (with probability one)29 the realized value of IW must be

precisely its expected value under independence. Hence, no evidence for spatial

dependence can ever be detected in this extreme case. More generally, the same

type of continuity argument used in Proposition 3 shows that, for weight matrices

W that are sufficiently close to W � (say in terms of the relative connectivity norm), it

must be true that the possible values of IW are concentrated close to the mean E(IW).

So again this statistic should have little ability to detect spatial dependence.

These ideas can be made more concrete in terms of the standard z test for

Moran statistics found in most software. If the standard deviation of IW under in-

dependence is denoted by sðIW Þ ¼ varðIW Þ1=2, then it is well known that the stan-

dardized z value

ZW ¼
IW � EðIW Þ

sðIW Þ
ð56Þ

is approximately distributed as N(0,1) for large n (Cliff and Ord 1981, section

8.5.1). Hence, one can use this distribution theory to test the hypothesis of spatial

independence with respect to weight matrix W.30

To study the behavior of this test for strongly connected weight matrices, we

shall focus only on the simulation results provided above in the section on ‘‘Biased

estimation for the maximally connected case in SL models.’’ Here, it was assumed

that r5 0.5 and hence that a substantial degree of positive spatial dependence is

present. To determine whether this dependence can be detected by the Moran

statistic for a given weight matrix, W, it suffices to compute IW(y, X) for simulated

data sets from model (1) and then to examine the frequency distribution of z values,

ZW(y, X), generated by this data. For a one-sided test of r40 at the a5 0.05 level,

we need only count the fraction of z values above za 5 1.65 to determine the power

of this test to detect positive spatial dependence, given the true value r5 0.5. For

the 1,000 simulated values at each link density level in the section above on biased

estimation in SL models, the resulting estimated power levels are shown in Table 4.

It is clear that at link densities above 0.80 the distribution is so concentrated

around the null mean EðIW Þ that even a dependency level of r5 0.5 is detectable

less than 10% of the time.31 Also, even though the distribution of IW concentrates at

the null mean as link density approaches 1, the power levels do not appear to fall to

zero in Table 4. The concentration of IW values drives the variance in (53) to zero

(easily verifiable by the same calculations used for the mean in the proof of Prop-

osition 532). Hence, when IW is highly concentrated, the standardized value ZW

becomes unstable (as it approaches the limiting indeterminate values 0/0 for W �).
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Concluding remarks

We have shown that the presence of strongly connected spatial weight matrices can

introduce serious biases into both the estimating and testing of spatial autocorrelation.

Hence, one may ask whether there is any simple intuitive explanation. One possi-

bility relates to the notion of ‘‘effective sample size.’’ It has long been observed that

the presence of statistical dependencies essentially reduce the amount of information

gained from each individual observation. For example, the observation of a sequence

of perfectly correlated coin tosses will offer no more information than the observation

of only the first toss, no matter how long the sequence is. Hence, insofar as strong

spatial connectivity reflects strong dependencies among units (or agents), there

should be less statistical information available for estimations or tests of hypotheses.

While this argument has intuitive appeal and is no doubt true to some extent, it

fails to explain, for example, why maximum likelihood methods should systemat-

ically underestimate the r parameter in SL and SE models. The findings presented

here suggest that much can be learned by studying the extreme case of maximally

connected weight matrices, W �. In particular, both concentrated likelihood func-

tions and Moran statistics reduce to particularly simple forms in this case and can

thus be studied in detail. Even in this extreme case, however, the subtlety of the

underestimation question is underscored by the quite different arguments used to

bound the values for each term in the concentrated log-likelihood function. In par-

ticular, both the eigenvalue structure of W � and the relation of W � to the regression

projection operator, In � XðX 0XÞ�1X 0, were involved. Thus, in some respects, these

results raise as many theoretical questions as they answer.

Even more important are questions relating to the practical consequences of

these results. Although the single simulation example presented here is very sug-

gestive, it can provide no definitive guidelines for applications. Hence, the actual

severity of these biases can be determined only by more extensive and systematic

simulation studies, such as those already begun by Mizruchi and Neuman (2008)

and Farber, Páez, and Volz (2009).
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Table 4 Power of Moran for a test at r ¼ 0:5

Average link density Sample mean Null mean Power ðr ¼ 0:5Þ

0.30 0.0416 � 0.0182 0.383

0.50 � 0.0046 � 0.0183 0.137

0.80 � 0.0152 � 0.0184 0.091

0.90 � 0.0190 � 0.0187 0.059

0.95 � 0.0187 � 0.0189 0.055

0.99 � 0.0201 � 0.0190 0.054
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Notes

1 I am indebted to a referee for pointing out that similar observations were made by Bao

and Ullah (2007) about the second order bias of these estimates in the context of a pure

SL model with circular weight matrices of varying degrees of connectivity.

2 A specific choice for b is considered below in the section on ‘‘Consequences for strongly

connected weight matrices in SL models’’ below.

3 This terminology is not to be confused with the graph-theoretical notion of ‘‘totally

connected,’’ which refers only to the presence of nonzero links between all distinct node

pairs.

4 This can also be expressed in terms of the (cell-wise) matrix inequalities W� �W �W �

for all W 2Wn.

5 One important example, pioneered by Kelejian and Prucha (1998) in the context of

increasing domain asymptotics, is to require uniform boundedness of the row and

column sums of n-square weight matrices, Wn. This implies that Wn must ‘‘approach’’ the

corresponding n-square matrix W� (in an appropriate sense) as n becomes large. A more

explicit graph-theoretical condition of the same type, designated as ‘‘uniformly bounded

maximum local degree,’’ is employed by Griffith and Lagona (1998).

6 Maximally connected spatial weight matrices have been studied in a somewhat different

context by Kelejian and Prucha (2002), who described them simply as models with

‘‘equal spatial weights’’ (see also Kelejian, Prucha, and Yuzefovich 2006 and Baltagi

2006). These matrices are also closely related to equicorrelation (or intraclass correlation)

matrices, as discussed, for example, in the review paper by Donner (1986).

7 While this development is quite standard (as, e.g., in Anselin 1988 and Anselin and Bera

1998, section III.B), the present results depend critically on the details of this maximum

likelihood formulation.

8 Concentrated likelihood functions are also designated as profile likelihood functions (as,

e.g., in Pace and Salvan 1997, section 4.6).

9 This maximum eigenvalue is always nonnegative (Horn and Johnson 1985, theorem

8.1.3) but need not be positive even when W has positive elements. Even for n 5 2, the

matrix W ¼ ½0 1 ; 0 0 � has lðW Þ ¼ f0; 0g.
10 This is also referred to as a ‘‘spatially filtered’’ version of y (e.g., in Anselin and Bera

1998).

11 This failure of existence is an instance of the more general result of Arnold (1979,

theorem 3) regarding the nonexistence of maximum likelihood estimators for covariance

parameters in linear models with exchangeably distributed errors. I am indebted to

Federico Martellosio for pointing this out to me.

12 The following result is essentially contained in theorem 1 of Kelejian, Prucha, and

Yuzefovich (2006), where it is employed to analyze the consistency properties of 2SLS

estimation in the case of equal spatial weights.

13 These results illustrate the more general finding of Arnold (1979, p. 196) regarding the

inconsistency of standard parameter estimates for linear models with exchangeably

distributed errors.

14 Many other choices are illustrated in Horn and Johnson (1985, section 5.6).

15 Because every positive scaling of a norm is also a norm, the first equality shows that this is

indeed a matrix norm.
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16 Expression (33) follows from the fact that 0 �W �W � ) lmaxðW Þ � lmaxðW �Þ ¼ 1)
1=lmaxðW Þ 
 1 (see Horn and Johnson 1985, corollary 8.1.19).

17 An alternative normalization that also shares this property is to set b equal to the

reciprocal of the smallest row or column sum, as proposed by Kelejian and Prucha (in

press, lemma 2). Although less standard than the present convention, this normalization

has the advantage of being much easier to compute for large weight matrices. A number

of additional normalizations, or ‘‘coding schemes,’’ are discussed in Tiefelsdorf, Griffith,

and Boots (1999).

18 Cases involving nonpositive dependencies ðr � 0Þ are discussed briefly in the Remark

following the proof sketch for Proposition 3 in Appendix A.

19 This example is meant only to illustrate the practical consequences of the analytical

results above. As mentioned in the introduction, more extensive and systematic

simulations can be found in Mizruchi and Neuman (2008) and Farber, Páez, and Volz

(2009).

20 Note that density values d can only be approximated by this sampling procedure.

However, repeated samples at each density level yielded variations that were too small to

warrant reporting. In all cases, the matrix WðdÞ had an average link density well within

0.01 of d.

21 The normalization b ¼ 1=ðn � 1Þ ¼ 1=49 used has the theoretical advantage of

preserving all relative connectivity relationships. But the present scaling to unit

maximum eigenvalues is a more typical normalization in practice. For comparison,

calculations were also done for the 1/49 scaling, which produced even more dramatic

underestimation results than those presented here.

22 The estimation was done in Matlab using a modified version of the LeSage (1999) suite of

programs.

23 Cases d 5 0.30 and d 5 0.95 are, respectively, very similar to d 5 0.50 and d 5 0.90 and

are omitted.

24 Note that for tests of positive r, it is theoretically more appropriate to consider a one-

sided test (r40). However, such results are not reported in standard spatial regression

software.

25 This terminology follows Anselin and Bera (1998).

26 Although the spatial dependence parameter in this model acts on residuals rather than y,

we choose to keep the same notation, r, to emphasize the parallels between these two

models.

27 In particular, the constant terms (const) are also easily shown to be identical.

28 This degeneracy is also an instance of the more general result in Arnold (1979, theorem

5) for the class of invariant test statistics for linear models with exchangeably distributed

errors. A more explicit version relating to the present case is given in Martellosio (2008,

props. 3.4 and 3.6).

29 It is a simple matter to show that, for any X, the set of y with My ¼ 0 has probability

measure zero.

30 The exact distribution of IW under independence has been obtained by Tiefelsdorf and

Boots (1995). However, most statistical packages rely on the asymptotic approximation

above.

31 The 0.054 value for density 0.99 is consistent with a limiting value of a5 0.05 for the

maximally connected case, as implied by the results of Martellosio (2008, prop. 3.5).
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32 Note, in particular, from Lemma 2 that for W �, trðMW �MW �Þ ¼ tr ½ð�bMÞð�bMÞ� ¼
b2trðMMÞ ¼ b2trðMÞ ¼ ½n � ðk þ 1Þ�=ðn � 1Þ2.

33 For the case of b ¼ 1=ðn � 1Þ, this result appears in section 2.5 of Kelejian and Prucha

(2002).

34 Note that Lsl is also unbounded at the upper boundary of ½W ��, namely,

r� ¼ 1=lmaxðW �Þ ¼ 1=½bðn � 1Þ�, but because Lslðr � jy;XÞ ¼ �1, this is of little

interest for maximum likelihood estimation.

35 A full proof of Proposition 3 is available in Appendix A of the online version of this article

(under ‘‘Recent Papers’’) at http://www.seas.upenn.edu/�tesmith.

Appendix A. Proofs of results in the text

Proof of Lemma 1: It follows from Searle (1982, section 12.3.d) that the eigenvalues

of any matrix of the form A ¼ aI þ c110 are given by

lðAÞ ¼ fa; . . . ; a; ðaþ ncÞg ðA1Þ

where a has multiplicity n� 1. Hence the eigenvalues of

W � ¼ b � ð1n10n � InÞ ¼ ð�bÞIn þ ðbÞ1n10n ðA2Þ

are immediately seen to be those in (20) of Lemma 1. &

Proof of Lemma 2: Observe from (19) and (7) that

M �W � ¼ ðIn � XðX 0XÞ�1X 0Þ � b � ð1n10n � InÞ
¼ b � ½1n10n � In � XðX 0XÞ�1X 01n10n þ XðX 0XÞ�1X 0�

ðA3Þ

But because ½XðX 0XÞ�1X 0�X ¼ X and 1n is the first column of X, it follows in par-

ticular that ½XðX 0XÞ�1X 0� 1n ¼ 1n. Hence, we see that

M �W � ¼ b � ½1n10n � In � 1n10n þ XðX 0XÞ�1X 0�
¼ b � ½XðX 0XÞ�1X 0 � In� ¼ �b �M

ðA4Þ

Next observe that, because ½XðX 0XÞ�1X 0�1n ¼ 1n ) 10n ¼ 10n½XðX 0XÞ
�1X 0�, it

also follows that

W � �M ¼ b � ð1n10n � InÞ � ðIn � XðX 0XÞ�1X 0Þ
¼ b � ½1n10n � 1n10nXðX 0XÞ�1X 0 � In þ XðX 0XÞ�1X 0�
¼ b � ½1n10n � 1n10n � In þ XðX 0XÞ�1X 0�
¼ b � ½�In þ XðX 0XÞ�1X 0� ¼ �b �M &

ðA5Þ
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Proof of Lemma 3: Observe from Lemma 2, together with the symmetry of W �

and M, that for any r 2 ½W �� and dataset (y, X),

y 0ðIn � rW �Þ0MðIn � rW �Þy ¼ y 0ðIn � rW �Þ0ðM � rMW �Þy
¼ y 0ðM � rMW � � rW �M þ r2W �MW �Þy
¼ y 0ðM þ rbM þ rbM þ r2b2MÞy
¼ ð1þ 2rb þ r2b2Þ � y 0My

¼ ð1þ rbÞ2 � y 0My

ðA6Þ

But r 2 ½W �� then implies that r > �1=b and hence that 1þ rb > 0. Thus,

W �-regularity of (y, X) will follow if it can be shown that y 0My > 0. But because M

is an orthogonal project matrix and hence is positive semidefinite, y 0My 
 0 for all

y and, moreover, that y 0My ¼ 0 3 My ¼ 0 (Horn and Johnson 1985, p. 400). Fi-

nally, because the regularity of (y, X) implies that My 6¼ 0, it must then be true that

y 0My > 0 and thus that W �-regularity holds. &

Proof of Proposition 1: The strategy is to use Lemmas 1 and 2 to show that the

concentrated likelihood function (expression [16] in the text),

Lslðrjy;XÞ ¼ const :þ
X

i
ln j1� rlij � ðn=2Þ ln½y 0ðIn � rW Þ0MðIn

� rW Þy� ðA7Þ

is reducible to a simple analytical form for which the result is obvious. To do so, we

first observe from Lemma 1 and the positivity of minif1� rliðW Þg on [W] that for

any r 2 ½W �� we must have 33

X
i
ln j1� rli j ¼

X
i
lnð1� rliÞ ¼ ðn � 1Þ ln½1� rð�bÞ� þ ln½1� rbðn � 1Þ�

¼ðn � 1Þ lnð1þ rbÞ þ ln½1� rbðn � 1Þ�
ðA8Þ

Moreover, we see from (A6) that

� ðn=2Þ ln½y 0ðIn � rW �Þ0MðIn � rW �Þy� ¼ �ðn=2Þ ln½ð1þ rbÞ2y 0My�
¼ �fn lnð1þ rbÞ þ ðn=2Þ lnðy 0MyÞg

ðA9Þ

Notice also from Lemma 3 that this log expression is well defined for all

r 2 ½W ��. Hence, by substituting (A8) and (A9) into (A7) we obtain the following

simple expression for the concentrated likelihood function:

Lslðrjy;XÞ ¼ const þ fðn � 1Þ lnð1þ rbÞ þ ln½1� rbðn � 1Þ�g
� fn lnð1þ rbÞ þ ðn=2Þ lnðy 0MyÞg

¼ const � lnð1þ rbÞ þ ln½1� rbðn � 1Þ�
ðA10Þ

where the term ðn=2Þ lnðy 0MyÞ, not containing r, has again been absorbed in const.

From here we need only observe that because r� ¼ �1=b it follows that for any

decreasing sequence (rm) in ½W ��, with limm!1 rm ¼ r�, we must have
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lim
m!1

Lslðrmjy;XÞ ¼ const � lim
m!1

lnð1þ rmbÞ þ lim
m!1

ln½1� rmbðn � 1Þ�

¼ const � lnð1þ r�bÞ þ ln½1� r�bðn � 1Þ�
¼ const � lnð0Þ þ lnðnÞ ¼ 1

ðA11Þ

and the result is established.34 &

Proof of Proposition 2: To establish (27) in Proposition 2, recall from (22) that

for any positive bound b,

r� ¼ 1=lminðW �Þ ¼ �1=b < 0 ðA12Þ

Hence, it follows that

yW � ðr�Þ ¼ ðIn � r�W
�Þy ¼ fIn � ð�1=bÞ½b � ð1n10n � InÞ�gy

¼ ½In þ ð1n10n � InÞ�y ¼ 1n10ny ¼ ð10nyÞ � 1n þ X � 0
¼ b0ðr�Þ � 1n þ Xbðr�Þ

ðA13Þ

and the result is established. &

Proof Sketch for Proposition 3: While the proof of this result is rather techni-

cal,35 the basic idea is simple. Observe from Fig. 2 that not only does the concen-

trated likelihood function Lsl diverge to þ1 at r�, but its derivative is negative

everywhere in [W�]. Hence, if we now write the concentrated likelihood function

as Lslðrjy;X ;W Þ to emphasize its dependence on W (as well as data (y, X)), then the

strategy of the proof is to show that the corresponding derivative, L0slðrjy;X ;W Þ,
with respect to r is continuous in W at the point W �. Using this continuity property,

it is possible to show that for any choice of bias factor a when W is sufficiently close

to W � (i.e., when e in expression [35] of Proposition 3 is sufficiently small), one can

guarantee that L0slðrjy;X ;W Þ will be negative for all r 2 ½W � with r 
 r0=ð1þ aÞ
and thus that Lslðrjy;X;W Þ can only achieve a maximum on ½r�; r=ð1þ aÞ Þ. &

Remark:

The proof sketched above also shows (from the persistence of negative slopes)

that for strongly connected weight matrices under conditions of no spatial depen-

dence, the null hypothesis, r5 0, will tend to be falsely rejected in favor of negative

dependencies (ro0). Moreover, in cases where such dependencies are actually

negative, it is equally clear the strength of these dependencies will tend to be

overestimated.

Proof of Lemma 4: Proof: Because PBB ¼ B, it follows at once that

PA ¼ PB ) PAB ¼ PBB ¼ B. Thus, we need only establish the converse. To do

so, observe that

PAB ¼ B ) PAB ½ðB0BÞ�1B0� ¼ B ½ðB0BÞ�1B0� ) PAPB ¼ PB ðA14Þ
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Moreover, it also follows that

B ¼ PAB ¼ AðA0AÞ�1A0B ¼ AðA0AÞ�1ðA0BÞ
) B0B ¼ B0AðA0AÞ�1ðA0BÞ ) jB0Bj ¼ jB0Aj � jA0Aj�1 � jA0Bj
) jA0Bj2 ¼ jB0Bj � jA0Aj > 0

ðA15Þ

and hence that A0B is nonsingular. Thus, by the first line of (A15) we have

PBB ¼ B ) PBAðA0AÞ�1ðA0BÞ ¼ AðA0AÞ�1ðA0BÞ ) PBA ¼ A ðA16Þ

where the last implication follows by post-multiplication of both sides by the in-

verse of the nonsingular matrix ðA0AÞ�1ðA0BÞ. Hence, by the argument in (A14)

PBA ¼ A) PBPA ¼ PA ) PAPB ¼ PA ðA17Þ

where the last implication follows by taking transposes of both sides and using the

symmetry of PA and PB. It can be concluded from (A14) and (A17) that

PA ¼ PAPB ¼ PB ðA18Þ

and the result is established. &

Proof of Proposition 4: To establish this result, it is clear from (6) and (41) in the

text that it suffices to show that the conditional variance estimates in (10) and (40)

are identical on ½W ��. If for notational convenience we now let

Br ¼ In � rW � ¼ In � rbð1n10n � InÞ ðA19Þ

(where b ¼ 1=ðn � 1Þ is one possibility) then by the first line of (10), it follows that

for the SL model (1),

ŝ2
slðrÞ ¼ ð1=nÞð½In � XðX 0XÞ�1X 0�BryÞ0ð½In � XðX 0XÞ�1X 0�BryÞ

¼ ð1=nÞ ½In � XðX 0XÞ�1X 0�Bry
��� ���2

¼ ð1=nÞ ðIn � PXÞBry
�� ��2

ðA20Þ

To compare this with the SE model (37), observe from (39) that

b̂seðrÞ ¼ ðX 0B0rBrXÞ�1X 0B0rBry ¼ ½ðBrXrÞ0ðBrXÞ��1ðBrXÞ0Bry ðA21Þ

and hence from (40) that

ŝ2
seðrÞ ¼ ð1=nÞðy � X b̂seðrÞÞ0B0rBrðy � X b̂seðrÞÞ

¼ ð1=nÞ Brðy � X b̂seðrÞÞ
��� ���2

¼ ð1=nÞ Brðy � X ½ðBrXrÞ0ðBrXÞ��1ðBrXÞ0BryÞ
��� ���2

¼ ð1=nÞ fIn � ðBrXÞ½ðBrXÞ0ðBrXÞ��1ðBrXÞ0gBryÞ
��� ���2

¼ ð1=nÞ ðIn � PBrXÞBry
�� ��2

ðA22Þ
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In this form, the result will follow if it can be shown that

PX ¼ PBrX for all r 2 ½W ��: ðA23Þ

But because X ¼ ½1n ; ~X � and PXX ¼ X together imply that PX1n ¼ 1n, we must

have

PXðBrXÞ ¼ bPXð1n10n � InÞX ¼ bðPX1nÞ10nX � bPXX

¼ bð1n10nÞX � bX ¼ bð1n10n � InÞX ¼ BrX
ðA24Þ

and may conclude from Lemma 4 that (A23) holds for all r 2 ½W ��. &
Proof of Proposition 5: Because b ¼ 1=ðn � 1Þ ) W �k k1¼ nðn � 1Þ

½1=ðn � 1Þ� ¼ n, it follows that

aW � ¼ n= W �k k1n=n ¼ 1 ðA25Þ

and hence that the Moran statistic for this case reduces to

IW � ðy;XÞ ¼ y 0MW �y

y 0My
ðA26Þ

Thus, we see from Lemma 3 that

IW � ðy;XÞ ¼ y 0ð�bMÞy
y 0My

¼ � 1

n � 1
� y
0My

y 0My
¼ � 1

n � 1
ðA27Þ

and may conclude that IW � is indeed concentrated at a single value. To show that

this value is precisely the mean EðIW � Þ, under independence, we note that, because

the trace of orthogonal projection (symmetric idempotent) matrix M is equal to

the dimension of its image space (Searle 1982, section 12.2), and that, because the

dimension of the complement of the span of X is n � ðk þ 1Þ, it follows that

trðMÞ ¼ n � ðk þ 1Þ ðA28Þ

This in turn implies from Lemma 3 that

trðMW �Þ ¼ trð�bMÞ ¼ � 1

n � 1

� �
trðMÞ ¼ � n � ðk þ 1Þ

n � 1
ðA29Þ

and hence from (A25), together with (53) in the text, that

EðIW � Þ ¼ trðMW �Þ
n � ðk þ 1Þ ¼ �

1

n � 1
ðA30Þ

Thus, the result follows from (A27) and (A30). &
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