
Monte Carlo Analysis

Andrew Q. Philips∗

February 7, 2017

∗Assistant Professor, Department of Political Science, University of Colorado Boulder, 333 UCB,
Boulder, CO. andrew.philips@colorado.edu. http://www.andyphilips.com/.

http://www.andyphilips.com/

Contents

1 Motivation 2

2 What’s so Different About it? 6

3 Where are the Random Draws Coming from? 10

4 What Do I Even Want to Look For? 11

5 Monte Carlo in Stata 12

6 Small Tips to Remember 14

7 Examples 17

8 Conclusion 18

© Andrew Q. Philips 2017 1

1 Motivation

This short paper discusses Monte Carlo simulations, with examples in both R and
Stata. Why would we ever want to use a Monte Carlo experiment? Let’s start with
a motivating example:

x <- rnorm(25)
y <- 2*x + rnorm(25)

Above we created a data-generating process (or DGP) of 25 observations. Y is a
function of a normally distributed X , as well as some random noise. Note that we
specified a coefficient on X of 2. Here is what the regression output looks like:

summary(lm(y~x))

##
Call:
lm(formula = y ~ x)
##
Residuals:
Min 1Q Median 3Q Max
-1.84637 -0.37758 -0.05448 0.58752 1.18899
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.03074 0.14831 0.207 0.838
x 2.39579 0.18158 13.194 3.25e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.7413 on 23 degrees of freedom
Multiple R-squared: 0.8833,Adjusted R-squared: 0.8782
F-statistic: 174.1 on 1 and 23 DF, p-value: 3.255e-12

Although the coefficient on X should be 2 (since we specified it ourselves), it is
not...the coefficent is almost 2.4. Looks like our OLS example results in a coeffecient
that is about 20% higher than what we specified when we created the data. What

© Andrew Q. Philips 2017 2

explains this? We only took one realization (or one draw) of the DGP. Let’s re-draw
the sample and run the same regression:

x <- rnorm(25)
y <- 2*x + rnorm(25)
summary(lm(y~x))

##
Call:
lm(formula = y ~ x)
##
Residuals:
Min 1Q Median 3Q Max
-2.33003 -0.76252 0.05049 0.82558 2.34376
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1623 0.2335 0.695 0.494
x 1.9816 0.2285 8.674 1.04e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.15 on 23 degrees of freedom
Multiple R-squared: 0.7659,Adjusted R-squared: 0.7557
F-statistic: 75.24 on 1 and 23 DF, p-value: 1.042e-08

The coefficient on X is much closer to 2 this time. If we were to keep doing this,
say 1000 times, saved the coefficents from the resulting OLS regressions, and plotted
their values, we would get something that looked like this:

plot(density(results[,1]), main='Coefficient of X Converges on 2')

© Andrew Q. Philips 2017 3

1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

Coefficient of X Converges on 2

N = 1000 Bandwidth = 0.04615

D
en

si
ty

As the plot shows, it looks like if we were to repeatedly take draws based on our
DGP that we created, and plotted the coefficents, we would get something awfully
close to the true value that we specified.

In short, the example shown above is the motivation behind Monte Carlo simulations.
This approach produces distributions of possible outcome values. Starting with
a given sample, we can use Monte Carlos to make stronger inferences about the
population; in our example above, this was the data-generating process we specified.
Based on a probability distribution we provide, the simulation ‘pulls’ or draws values
at random from this distribution and calculates the probabilistic outcome. In effect,
by allowing our parameters (of a function such as an OLS regression) to vary within
a set of constraints (the probability distribution), we will end up with a much better
sense of what the population values are, and what our degree of confidence in that
value is.

Why should we care? For one, measures of uncertainty are important, especially
in the social sciences where deterministic outcomes are impossible. Moreover, although
many tests and models perform well given extremely large samples, often we have
much smaller samples in practice. Or, the samples that we draw may not be

© Andrew Q. Philips 2017 4

independent. All of these can be tested using Monte Carlo methods.
Monte Carlo methods developed out of the Los Alamos Laboratory under Stanislaw

Ulam in the mid-late 1940s. Later, John von Neumann picked up the method, and
gave it the name “Monte Carlo.” The casinos of Monte Carlo (in Monaco) was
where Ulam’s uncle would gamble (see Figure 1).1 These simulations were further
developed under such groups as the RAND Corporation.

Figure 1: Monte Carlo

Monte Carlo simulations are useful for a number of reasons. First, we may want to
find out the asymptotic properties of our results. One example are the critical values
for unit-root tests, many of which do not follow the standard t, Z, or F distributions.
By specifying the Data-Generation Process (DGP), we can examine the properties
of our test statistic or model at hand or calculate these critical values ourselves.

We can also examine finite-sample properties of a procedure; how many observations
are good enough to ensure we correctly reject the null hypothesis at an acceptable
number of times, for example. Finite samples are very important to examine in the
context of estimators since we rarely have large enough samples where the asymptotic
properties hold. Often, Monte Carlo experiments in applied papers will pit one
procedure against another and compare their finite-sample properties.

They can also serve as robustness checks for our models, or as an aid to help
diagnose something we may suspect in our sample data. For instance, we may have

1Figure from: I, Katonams, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2480853.

© Andrew Q. Philips 2017 5

a model we have specified but want to run simulations on it under certain conditions;
we can violate assumptions of our methods (such as the ‘BLUE’ of OLS or certain
distributional assumptions) and see how our models respond. Or we may want to
create a simulation that tests our distributional assumptions; although we typically
assume Gaussian (i.e. independent and identically distributed) errors, would our
model still yield correct inferences with a different distribution, such as a Beta, for
instance? Or, could it handle a violation such as small amounts of autocorrelation
and still perform well? All of these counterfactuals, or “what-if?” scenarios, can
easily be tested through a Monte Carlo approach.

2 What’s so Different About it?

What does our regression output usually give us? We have a random vector X,
and estimate as data-generation process parameter θ as E[f (X)] = θ.2 In typical
regression analysis we have a single sample estimate for θ̂n (i.e. only x). In our
example above, we specified the population parameter θ as 2, and when we took our
samples, we drew two samples: θ̂1 = 2.396 and θ̂2 = 1.982

With Monte Carlo experiments, we draw new samples of X from the underlying
population in order to learn about the distribution of θ̂n. Let’s turn back to our
earlier example. To make the density plot of θ, I took 1000 simulations, which gives
us n = 1000 estimates θ̂n:

reps = 1000 # no. of sims
n = 25 # no. of draws
results = matrix(NA,nrow=reps,ncol=1) # where output is going
i = 1
for(i in 1:reps) {

x <-rnorm(n)
y <- 2*x + rnorm(n)
results[i,1] <- lm(y~x)$coefficients[2] # grab only theta

}
plot the results:
plot(density(results[,1]), main='Coefficient of X Converges on 2')

2I draw (no pun intended) largely from Haugh (2004).

© Andrew Q. Philips 2017 6

http://www.columbia.edu/~mh2078/MCS04/MCS_framework_FEegs.pdf

So in this example, going from i = 1 to 1000 we generate xi, set fi = f (xi). After
we have simulated all 1000 fi’s, we can then calculate θ̂n:

θ̂n =
f1 + f2 + ...+ fn

n
(1)

Which in our case of 1000 simulations appears as

θ̂n =
f1 + f2 + ...+ fn

n
=

∑1000
i=1 fn

1000
(2)

summary(results[,1])

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.262 1.884 2.008 2.017 2.158 2.674

So it looks like with 1000 draws we found a θ̂ very close to θ = 2. According
to the Central Limit Theorem, given enough draws we should now have a normal
distribution of θ̂n centered around true θ (assuming independence of draws). This
means that our estimate of θ̂n will also be unbiased:

E[θ̂n] =
E[∑1000

i=1 fn]

1000
= θ (3)

If we were to continuously ramp up the number of observations in each sample,
we would likely also find in this sample that our estimate of θ̂n is consistent:

lim
n→∞

θ̂n = θ (4)

In addition to estimating a convergence around a certain value, we can estimate
the probabilities that X is very close to some A subspace (often this is a value of
a parameter we specify in the DGP). For example, we can use tests to see if the
parameter values we simulate are statistically significant from the true DGP:

θ = E[IA(X)]→ IA(X) (5)

where IA(X) = 1 if X ∈ A and 0 otherwise. For instance, if we have a variable x
with a parameter β = 2, for a given confidence interval (say 95%), we can test if

© Andrew Q. Philips 2017 7

the population parameter (2) falls within the confidence interval (calculated by our
standard error) 95% of the time. This is relatively straightforward with Monte Carlo
simulations; for instance, with 1000 simulations, if ≈950 of the sample parameter
values lie within the 95% confidence interval of the population parameter, 2, we can
say that our estimates of the standard errors are accurate...i.e. we only reject the
null hypothesis when it is true (Type I error) about 5% of the time. We could even
calculate Type II error (failure to reject a false null hypothesis) by picking the bounds
of our confidence interval (surrounding the population parameter) and calculating
the number of times that the sample confidence interval includes the false null areas
(any space outside of ≈1.96 standard deviations away from 2, if we are using 95%
CIs).

Here is a small example. We simulate our linear regression as before, but now
focus on the number of times that we estimate a θ̂ that is significantly (as judged by
the p-values coming from a t-test with the null hypothesis that H0 : θ̂ = 2) different
from 2.

set.seed(023509)
reps = 1000 # no. of sims
n = 25 # no. of draws
results = matrix(NA,nrow=reps,ncol=1) # where output is going
i = 1
for(i in 1:reps) {

x <-rnorm(n)
y <- 2*x + rnorm(n)
reg <- lm(y ~ x)
df.ols <- summary.lm(reg)$df[2] # degrees of freedom
beta <- summary.lm(reg)$coefficient[2,1] # beta of X
se <- summary.lm(reg)$coefficient[2,2] # std. error of X
results[i,1] <- (beta - 2)/se # t-test that theta = 2

}
plot the results:
plot(density(results[,1]), main='t-Stat of Test that theta = 2')
abline(v = 1.96)
abline(v = -1.96)

© Andrew Q. Philips 2017 8

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

t−Stat of Test that theta = 2

N = 1000 Bandwidth = 0.2341

D
en

si
ty

quantile(results, c(.025, .975))

2.5% 97.5%
-2.006965 2.000609

As expected, the t-statistic of our test should be centered around 0, and we should
only be able to reject the null (have a t-stat greater than approximately 1.96 or below
-1.96) about 5 percent of the time. Sure enough, this is the case.

Monte Carlo experiments have also been used to solve intractable equations, such
as converging on the critical values of unit root tests.

A summary of the difference between an empirical analysis and a Monte Carlo
analysis is shown in Table 1.3 Turning to some population parameter θ, in standard
empirical analyses, we never truly know the population parameter. In contrast, in
Monte Carlo simulations, we do know this parameter; indeed, we specify it during the

3Thanks to Guy Whitten for coming up with such a table.

© Andrew Q. Philips 2017 9

Table 1: The Differences Between Empirical Analyses and Monte Carlo Experiments

Empirical Analysis Monte Carlo
θ Unknown Created in the DGP

θ̂ Estimated Estimated
Sample Typically fixed Many simulations

Inferences Known θ̂ → unkown θ Multiple (e.g. |θ̂−θ|,
the spread of θ̂ around θ)

data generating process. For the sample parameter θ̂, there is typically no difference
between the empirical analysis and the Monte Carlo simulations. We run a regression
and obtain β̂ coefficients in both cases, for instance. However, unlike the empirical
analysis where we typically only observe a single sample, in Monte Carlo simulations
we observe many samples taken from the population.4 Our inferences also differ
between empirical analyses and Monte Carlo experiments. In the former, we make
inferences about the population parameter θ, given our sample parameter, θ̂. In the
latter, we may look at a number of different statistics, such as the spread and/or
bias of all the θ̂ estimated parameters around the true parameter θ.

3 Where are the Random Draws Coming from?

Most commonly, we draw from a normal, uniform or a t distribution. But if we have
a suspicion our random draws exhibit some other distributional form, we should
account for this by changing our simulation. We could draw binomial, Poisson,
chi-squared, and so on. Programs like R and Stata have many of these distributions
as canned procedures, and it is generally good practice to use these rather than
program your own distribution.5 In typical analyses however, such as examining an
OLS model, we only use the normal and uniform distributions.

There are procedures related to Monte Carlos, such as the jackknife or the
bootstrap. Yet Monte Carlos differ from these two since they are resampling techniques
(such as bootstrapping) since resampling takes draws (with replacement) from our
sample, not our population. The fact that many draws are taken in resampling makes

4If we were running an experiment, we could perhaps obtain multiple samples of individuals.
For most observational data however, we only observe a single, “real world” sample.

5For more on this, search help density functions in Stata.

© Andrew Q. Philips 2017 10

it somewhat similar to Monte Carlo techniques. To sum up these differences:

• Resampling: Repeated draws from sample

• Monte Carlo: Repeated samples from the underlying population

However, both methods involve using data we either already have (resampling) or
can create (Monte Carlo) to make broader inferences of the population. For more
information on resampling methods see Efron and Tibshirani (1986, 1994).

A common number of simulations in an experiment is 1,000. However, for
publication, or if the need arises, 10,000 simulations or more may be performed.
For work calculating critical values, I have seen 40,000 simulations or more. Usually
however, moving from 1,000 to 10,000 simulations makes little difference.6

4 What Do I Even Want to Look For?

It is interesting to examine three properties of estimators when conducting Monte
Carlo experiments.7 These are not the only properties to look for, but they tend to
be the most common. First, bias is a measure of how far off your estimator is from the
true estimate: |θ− θ̂=Bias| is the absolute bias of the estimator. Second, efficiency is
how large the variance is around your estimate. Usually this involves examining the
measure of uncertainty around the estimate using standard errors. There is almost
always an inverse relationship between these two; an estimator that reduces bias, such
as fixed effects, tends to be less efficient than its counterpart, random effects (and
random effects will suffer larger bias). Third, simulations can examine consistency,
or how well the estimator improves (less bias and more efficiency) as the sample size
moves towards infinity. Although typically most users of statistical models assume
that their model does not suffer from bias and is efficient (and consistent), Monte
Carlo methods allow us to investigate these assumptions.

While the above estimator properties are of interest, so are more global properties
of the model. One such output worth examining is the Mean Squared Error (MSE—
or sometimes Root MSE). With it we can look at the overall performance of our

6We could even run a Monte Carlo to see this relationship between precision and computing
cost!

7Much of this section comes from Carsey (2011).

© Andrew Q. Philips 2017 11

http://www.unc.edu/~carsey/teaching/ICPSR-2011/Sim%20Slides%20Handout.pdf

model. In other words, this approach can examine both bias and efficiency of a
single parameter estimate, θ̂:

θ̂ = Bias(θ̂,θ)2 +Var(θ̂) (6)

MSE has a few weaknesses. Outliers are weighted more due to the squared term.
The Root-MSE may be helpful to reduce the influence of outliers. However, bias
and inefficiency are still weighted the same—perhaps one matters more than the
other? In any case, some other ways to evaluate the performance of a model may be
information criterion (AIC/BIC), out of model forecasting, or the level of variance
explained.

5 Monte Carlo in Stata

In the examples above we saw how we can create Monte Carlo simulations in R. Stata
also makes performing Monte Carlo simulations rather easy through the use of the
simulate command, which comes as a canned procedure. Another possible command
is postfile, although that is less of a Monte Carlo command and more of a simple
way of combining results we loop over into a single dataset for viewing (just like we
did in R). Overall, I find that simulate works best if the Monte Carlo is relatively
short, while if there are lots of parameters that we have to loop over postfile makes
it easy to combine and see the output.

Stata and R technically are not drawing random numbers—only pseudo-random
numbers can be generated in the program. However, this is probably good enough for
us. In reality it is just a random starting point for a set sequence of numbers. But,
those who still need more randomness can go to Random.org. Their randomness
generator, “comes from atmospheric noise, which for many purposes is better than
the pseudo-random number algorithms typically used in computer programs.”

Since our output would be different if we re-ran a simulation, it is always a good
idea to set the ‘seed’ at the beginning of a .do file. We did this above using the
set.seed() command in R. This ensures that the sequence of random numbers Stata
generates starts with the same starting values; we will get the same output every
time if we set the seed, which is good, especially for replication. If the seed is not
set, Stata uses the computer’s clock to generate starting values, and you will get a
(slightly) different result every time.

In addition, the number of simulations is important. As shown above, a common

© Andrew Q. Philips 2017 12

http://www.random.org

number is 1000 simulations when conducting a Monte Carlo experiment.
There are a number of typical steps for conducting a Monte Carlo experiment in

Stata:

1. Decide on the test statistic that we want to compute (sample mean, sample
regression parameters, etc...).

2. Decide on the True statistics from above: either population mean, or the true
model parameters. Since we create the Data Generating Process, we know what
the true values of the parameters are, along with any ‘complexities’ we may
add (i.e. autocorrelation, heteroskedasticity, omitted variables, etc.). This is
the step where we actually write the parametric model that generates the data,
i.e. yi = 1+ 2 ∗ x1i + 4 ∗ x2i + ε. Note that we are including both a systematic
component (the constant, and the independent variables x1 and x2) as well as
a stochastic component ε.8

3. Create a program to set up what one simulation trial looks like.

4. Run this first trial. This step is analogous to what we do in most of our applied
work where we only have one sample. This is always a good idea to see if our
program needs any tweaking.

5. Use the simulate command to simulate the number of trials (i.e. sample redraws)
we want. If we create a flexible enough program in step 1 we can also change
parts of our experiment to run different types of simulate without having to go
back and create a whole new program. For instance, we can write the program
so Stata asks us to provide the number of observations in the sample for each
Monte Carlo experiment. However, it is important to vary only one thing at
a time. For instance, if we vary α from 0 to 10 and γ as 0 and 1, we need to
simulate all values of α at γ = 0, and then another set of simulations across
α with γ = 1. If we did not do this, we wouldn’t know which movement was
producing the changes we saw.

6. Finally we analyze the output. Typically this involves just looking at the mean
of the simulation, and standard deviation. Using sum to examine summary
statistics and kdensity for kernel-density plots are particularly helpful here. It
may also involve examining precision, power, bias, and more complex hypotheses

8If we didn’t add the stochastic component, there would be no inherent randomness, and we
would precisely estimate θ every time.

© Andrew Q. Philips 2017 13

tests. simsum is a user-written program for looking at some of these more
complex post-experiment commands.

6 Small Tips to Remember

• Only vary one thing at a time! Try changing the value of a parameter while
holding everything else constant, or create nested loops where you vary everything
each of the loops.

• If varying a number of parameters/other things, remember that the number
of Monte Carlo iterations performed increases very fast. For instance, running
1000 simulations on t = 10,20,50 means 3000 simulations are performed, since
1000 simulations are run on each value of t. Adding a error correlation, for
instance, from ε= 0,0.2,0.6,0.8 means that we now run 1000 simulations where
t = 10 and ε = 0, 1000 where t = 10 and ε = 0.2, 1000 where t = 10 and ε = 0.6,
and so on...this would result in 12,000 simulations total (1000*3*4=12,000).

• “Thinking is expensive, computers are cheap”

1. Never program your own distribution/method when a canned procedure
will do (also makes your code easier to read). The “randomness creator” is
the key part of a Monte Carlo simulation and slight mistakes/differences
from the correct distribution will produce wildly different results.

2. Computers have increased their computing power greatly over the past
years...this makes simulating much easier. You can simulate even relatively
complex Monte Carlos quickly on just a small laptop.

3. Parallel computing is growing in popularity, especially as more and more
computers have faster, multiple processors. Basically given a repetitive
task (simulations), these programs split the work up evenly between the
processors, and at the end combine the data back into one long list. R
has the “snow” library and Stata has the user-written “parallel” package.
Both can quickly speed up the time it takes to run Monte Carlos.

• Think about how you would like to present your results, and construct your
simulation around it. For instance, if you would like to show how your estimator
behaves over different levels of observations, construct your Monte Carlo to vary
the levels of n. Also be sure what you would like to present: a density function,

© Andrew Q. Philips 2017 14

the mean value of the simulations, the proportion of times a simulation falls
above or below some value, and so on.

• Presentation of results are equally important. Often, I find that tables of
results mask the substantive findings of the experiment, unless there are only
a few entries (typically less than 10). If you are varying lots of things, it may
make sense to graphically present the result. For instance, Figure 2 shows the
results of a Monte Carlo experiment of a working paper I have. The figure is
comparing the rates of Type I error across various cointegration tests. Although
there is a lot going on in Figure 2, a table that presented the same amount of
information would have had 528 entries (3 levels of observation, 4 combinations
of independent variables, and 11 values of autocorrelation, ϕx, across 4 different
unit root tests)! Often with Monte Carlo simulations you can paint a much
clearer story using figures instead of tables.

• Make sure to run one simulation just to make sure your program is performing
as you want. Monte Carlos can quickly become complex programming tasks
and running a single simulation to check that the program is working is much
better than starting the simulation and finding out you have a mistake after it
is complete!

• Loops make everything happen, especially when manipulating multiple factors
in your simulation.

• There is lots of code and help online. See references for more information. Here
are some free online help sources: For R, see Robert and Casella’s presentation
to accompany their 2009 book (which is in the references). Also see Carsey
(2011). In Stata, look at Baum’s 2007 presentation. Another Stata .pdf with
pretty good code can be found at the Learn Econometrics website

• Monte Carlo methods are used in other areas too (i.e. Bayesian Markov Chain
Monte Carlo methods, machine learning...basically anywhere where closed-form
solutions are computationally intractable).9

9figure source: https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_mcmc_sect055.htm

© Andrew Q. Philips 2017 15

http://www.stat.ufl.edu/archived/casella/ShortCourse/MCMC-UseR.pdf
http://www.unc.edu/~carsey/teaching/ICPSR-2011/Sim%20Slides%20Handout.pdf
http://fmwww.bc.edu/GStat/docs/StataSimul.pdf
http://www.learneconometrics.com/pdf/MCstata/MCstata.pdf

0.2.4.6.81

Proportion of Cointegrating Relationships
0

.2
.4

.6
.8

1
Va

lu
e

of
 φ

x

T
 =

 3
5,

 1
 X

0.2.4.6.81

0
.2

.4
.6

.8
1

Va
lu

e
of

 φ
x

T
 =

 3
5,

 2
 X

0.2.4.6.81

0
.2

.4
.6

.8
1

Va
lu

e
of

 φ
x

T
 =

 3
5,

 3
 X

0.2.4.6.81

0
.2

.4
.6

.8
1

Va
lu

e
of

 φ
x

T
 =

 3
5,

 4
 X

0.2.4.6.81

Proportion of Cointegrating Relationships

0
.2

.4
.6

.8
1

Va
lu

e
of

 φ
x

T
 =

 5
0,

 1
 X

0.2.4.6.81

0
.2

.4
.6

.8
1

Va
lu

e
of

 φ
x

T
 =

 5
0,

 2
 X

0.2.4.6.81

0
.2

.4
.6

.8
1

Va
lu

e
of

 φ
x

T
 =

 5
0,

 3
 X

0.2.4.6.81

0
.2

.4
.6

.8
1

Va
lu

e
of

 φ
x

T
 =

 5
0,

 4
 X

0.2.4.6.81

Proportion of Cointegrating Relationships

0
.2

.4
.6

.8
1

Va
lu

e
of

 φ
x

T
 =

 8
0,

 1
 X

0.2.4.6.81

0
.2

.4
.6

.8
1

Va
lu

e
of

 φ
x

T
 =

 8
0,

 2
 X

0.2.4.6.81

0
.2

.4
.6

.8
1

Va
lu

e
of

 φ
x

T
 =

 8
0,

 3
 X

0.2.4.6.81

0
.2

.4
.6

.8
1

Va
lu

e
of

 φ
x

T
 =

 8
0,

 4
 X

0.2.4.6.8

0
.2

.4
.6

.8
1

Va
lu

e
of

 φ
x

Bo
un

ds
 T

es
t

Jo
ha

ns
en

 B
IC

Jo
ha

ns
en

 R
an

k
En

gl
e-

G
ra

ng
er

JU
N

K
 G

R
A

PH
!!

Fi
gu

re
2:

Pr
op

or
tio

n
of

M
on

te
C
ar
lo

Si
m
ul
at
io
ns

(fa
lse

ly
)C

on
cl
ud

in
g
C
oi
nt
eg
ra
tio

n
A
cr
os
sV

ar
io
us

M
et
ho

ds

N
ot

e:
Fr

om
Ph

ili
ps

(2
01

7)
.

Ea
ch

pl
ot

sh
ow

s
th

e
pr

op
or

tio
n

of
sim

ul
at

io
ns

fin
di

ng
(a

t
p
<

0.
05

)
ev

id
en

ce
of

on
e

co
in

te
gr

at
in

g
re

la
tio

ns
hi

p
w

ith
up

to
k

re
gr

es
so

rs
an

d
di

ffe
re

nt
nu

m
be

rs
of

ob
se

rv
at

io
ns

ac
ro

ss
va

ry
in

g
le

ve
ls

of
au

to
re

gr
es

sio
n

in
x 1

t,
us

in
g

ea
ch

of
th

e
fo

ur
co

in
te

gr
at

io
n

te
st

in
g

pr
oc

ed
ur

es
.

© Andrew Q. Philips 2017 16

Figure 3: A Markov Chain Monte Carlo Converging on a Stable Estimate

7 Examples

On the download page of my website there are a number of examples of Monte
Carlos in both R and Stata. The first example, Monte Carlo 1, is an example of the
Central Limit Theorem from Cameron and Trivedi. In the same files, there is also
a simulation that looks at the performance of OLS, Prais-Winsten GLS, and OLS
with a lagged dependent variable under varying degrees of autocorrelation.

The next example, Monte Carlo 2, is a Stata file that ‘breaks’ an instrumental
variable regression through two ways. First, we examine what having a weak instrument
does to our estimates. Second, we make the instrument invalid by correlating it (over
varying degrees) with the error. We explore a variety of ways of graphing these results
too.

The third example, Monte Carlo 3, is a Stata file that examines the performance
of the Zivot-Andrews test for a structural break under a unit root. The size of the
intercept break is varied, and the test statistics are gathered and analyzed.

In another example, Monte Carlo 4, we examine the properties of panel unit
root tests. The program allows us to create any number of panels that can be as
long as we’d like. We can set the number of unit root series along with the level of
autocorrelation in the stationary series...since this likely affects the performance of
the tests too. A variety of unit root tests are examined across varying N panels and

© Andrew Q. Philips 2017 17

T time units.
NOTE: Some of these simulations take quite some time to run.
Last, for those interested in resampling methods, I have short Stata and R files

covering the bootstrap and jack-knife procedures.

8 Conclusion

The purpose of this paper was to provide a gentle introduction to Monte Carlo
methods using both Stata and R. Monte Carlo simulations are a powerful tool that
anyone familiar with a bit of statistics can use.

© Andrew Q. Philips 2017 18

References
Efron, Bradley and Robert J Tibshirani. 1994. An introduction to the bootstrap.

CRC press.

Efron, Bradley and Robert Tibshirani. 1986. “Bootstrap methods for standard errors,
confidence intervals, and other measures of statistical accuracy.” Statistical science
pp. 54–75.

Philips, Andrew Q. 2017. “Have your cake and eat it too: Cointegration and
dynamic inference from autoregressive distributed lag models.” American Journal
of Political Science .

Robert, Christian P. and George Casella. 2010. Introducing Monte Carlo Methods
with R. Springer.

© Andrew Q. Philips 2017 19

	Motivation
	What's so Different About it?
	Where are the Random Draws Coming from?
	What Do I Even Want to Look For?
	Monte Carlo in Stata
	Small Tips to Remember
	Examples
	Conclusion

