PolSci 2740

Homework \# 1

(Show your work)
DUE: February 3, 2021

January 27, 2021

1 Some Spatial Autoregression Math

1.1 Intro to the Spatial Autoregressive (SAR) Model

The spatial-lag model is:

$$
\mathbf{y}=\rho \mathbf{W} \mathbf{y}+\mathbf{X} \beta+\varepsilon \Rightarrow \varepsilon=(\mathbf{I}-\rho \mathbf{W}) \mathbf{y}-\mathbf{X} \beta=\mathbf{A} \mathbf{y}-\mathbf{X} \beta
$$

The likelihood for ε is:

$$
L(\varepsilon)=\left(\frac{1}{\sigma^{2} 2 \pi}\right)^{N / 2} \exp \left(-\frac{\varepsilon^{\prime} \varepsilon}{2 \sigma^{2}}\right)
$$

The inverse function is: $\varepsilon=r^{-1}(\mathbf{y})=(\mathbf{I}-\rho \mathbf{W}) \mathbf{y}-\mathbf{X} \beta$
The Jacobian is: $\frac{\partial \varepsilon}{\partial \mathbf{y}}=(\mathbf{I}-\rho \mathbf{W})=\mathbf{A}$
By the multivariate change of variables theorem, the likelihood for \mathbf{y} is

$$
L(\mathbf{y})=|\mathbf{A}|\left(\frac{1}{\sigma^{2} 2 \pi}\right)^{N / 2} \exp \left(-\frac{1}{2 \sigma^{2}}(\mathbf{A} \mathbf{y}-\mathbf{X} \beta)^{\prime}(\mathbf{A} \mathbf{y}-\mathbf{X} \beta)\right)
$$

The log-likelihood function is

$$
L L(\mathbf{y})=\ln |\mathbf{A}|+\left(\frac{N}{2}\right) \ln \left(\frac{1}{2 \pi \sigma^{2}}\right)+\left(-\frac{1}{2 \sigma^{2}}(\mathbf{A} \mathbf{y}-\mathbf{X} \beta)^{\prime}(\mathbf{A} \mathbf{y}-\mathbf{X} \beta)\right)
$$

1.2 Estimating the SAR Model

The gradient of the log-likelihood function is equal to the zero vector at a stationary point.

$$
G=\nabla L L=\left[\begin{array}{l}
L L_{\rho} \\
L L_{\beta}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Using a numerical algorithm (e.g., Newton-Raphson, Berndt-Hall-Hall-Hausman, Davidon-Fletcher-Powell), you find the stationary point at

$$
\left[\begin{array}{l}
\hat{\rho} \\
\hat{\beta}
\end{array}\right]=\left[\begin{array}{l}
.09 \\
1.5
\end{array}\right]
$$

If the stationary point is a maximum, the matrix of second derivatives, the Hessian matrix, will be negative definite.

$$
H=\nabla^{2} L L=\left[\begin{array}{ll}
L L_{\rho \rho} & L L_{\rho \beta} \\
L L_{\beta \rho} & L L_{\beta \beta}
\end{array}\right]=\left[\begin{array}{cc}
-692 & -10 \\
-10 & -3
\end{array}\right]
$$

a. Check that the Hessian is negative definite by solving for its eigenvalues.
b. Calculate the (asymptotic) variance-covariance matrix using the Fisher information matrix, $(-H)^{-1}$.

2 Difference Equations

Enders, Exercise \#13, p. 45.
Consider the following two stochastic difference equations:
i $y_{t}=3+0.75 y_{t-1}-0.125 y_{t-2}+\varepsilon_{t}$
ii $y_{t}=3+0.25 y_{t-1}-0.375 y_{t-2}+\varepsilon_{t}$
a. Use the method of undetermined coefficients to find the particular solution for each equation.
b. Find the homogeneous solutions for each equation.
c. For each process, suppose that $y_{0}=y_{1}=8$ and that all values of ε_{t} for $t=1,0,-1,-2, \ldots=$ 0 . Use the method illustrated by equations (1.75) and (1.76) to find the values of A_{0} and A_{1}.

Also, calculate the first two impulse responses for $\varepsilon_{t}, \frac{\partial y_{t+1}}{\partial \varepsilon_{t}}$ and $\frac{\partial y_{t+2}}{\partial \varepsilon_{t}}$.

