April 2013, Problem 2. Let f and g be two Riemann integrable functions on $[0,1]$, and $h(x)=\max \{f(x), g(x)\}$ for $x \in[0,1]$.
(i) Prove that h is Riemann integrable on $[0,1]$;
(ii) Suppose that $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ are two sequences of Riemann integrable functions on $[0,1]$ such that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right| d x=\lim _{n \rightarrow \infty} \int_{0}^{1}\left|g_{n}(x)-g(x)\right| d x=0
$$

Let $h_{n}(x)=\max \left\{f_{n}(x), g_{n}(x)\right\}$ for $x \in[0,1]$ and $n \in \mathbb{N}$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|h_{n}(x)-h(x)\right| d x=0
$$

