April 2012, Problem 3. Suppose that $f:(0,1) \rightarrow \mathbb{R}$ is continuous and bounded such that the limit $\lim _{x \rightarrow 0^{+}} f(x)$ does not exist. Prove that there is an interval $[a, b], a<b$ such that for every $x \in[a, b]$ there is a decreasing sequence $x_{k} \in(0,1), x_{k} \rightarrow 0$ with $f\left(x_{k}\right) \rightarrow x$. (Definition: $L=\lim _{x \rightarrow 0^{+}} f(x)$ if for all $\epsilon>0$ there exists $\delta>0$ such that $0<x<\delta \Rightarrow$ $|f(x)-L|<\epsilon$.)
Hint: You may want to use the fact that $\lim _{x \rightarrow 0^{+}} f(x)$ exists if and only if

$$
\limsup _{x \rightarrow 0^{+}} f(x) \doteq \lim _{x \rightarrow 0^{+}} \sup \{f(y) \mid 0<y \leq x\}
$$

is equal to $\lim \inf _{x \rightarrow 0^{+}} f(x)$ (which is defined analogously). If you use it, prove it.

