April 2011, Problem 2. Let (M, d) be a metric space such that

$$
d(x, z) \leq \max \{d(x, y), d(y, z)\}
$$

for all $x, y, z \in M$. For any $x \in M$ and $r>0$, the set $B(x, r)=\{y \in M: d(y, x)<r\}$ is called an open ball in M.
(a) Prove that every open ball in M is a closed set.
(b) Prove that if two open balls in M have a common point, then one of them is contained in the other.
(Contextual note. A metric with the property above is called an ultrametric. These can be found "in nature": for example the p-adic norm on \mathbb{Q}, p prime, (google it) is an example.)

