Pugh Ed. 2, Ch. 2, #46. Assume that A, B are compact, disjoint, nonempty subsets of M. Prove that there are $a_0 \in A$ and $b_0 \in B$ such that for all $a \in A$ and $b \in B$ we have

$$d(a_0, b_0) \le d(a, b).$$

[The points a_0 , b_0 are closest together.]

August 2012, Problem 1. Let (M,d) be a compact metric space and $z \in M$. Let $T \colon M \to M$ be a function which satisfies $d(x,y) \leq d(T(x),T(y))$ for all $x,y \in M$, i.e. the distances are non-decreasing under the mapping T. Define $\{x_n\}$ by

$$x_1 = T(z)$$
 and $x_{n+1} = T(x_n)$ for $n \ge 1$.

Prove that there exists a subsequence of $\{x_n\}$ which converges to z.