Pugh Ed. 2, Ch. 2, \#46. Assume that A, B are compact, disjoint, nonempty subsets of M. Prove that there are $a_{0} \in A$ and $b_{0} \in B$ such that for all $a \in A$ and $b \in B$ we have

$$
d\left(a_{0}, b_{0}\right) \leq d(a, b) .
$$

[The points a_{0}, b_{0} are closest together.]
August 2012, Problem 1. Let (M, d) be a compact metric space and $z \in M$. Let $T: M \rightarrow M$ be a function which satisfies $d(x, y) \leq d(T(x), T(y))$ for all $x, y \in M$, i.e. the distances are non-decreasing under the mapping T. Define $\left\{x_{n}\right\}$ by

$$
x_{1}=T(z) \quad \text { and } x_{n+1}=T\left(x_{n}\right) \text { for } n \geq 1 .
$$

Prove that there exists a subsequence of $\left\{x_{n}\right\}$ which converges to z.

