Pugh Ed. 2, Ch. 2, \#72. Let H be the hyperbola $\left\{(x, y) \in \mathbb{R}^{2} \mid x y=1\right.$ and $\left.x, y>0\right\}$ and let X be the x-axis.
(a) Is the set $S=X \cup H$ connected?
(b) What if we replace H with the graph G of any continuous positive function $f: \mathbb{R} \rightarrow$ $(0, \infty)$; is $X \cup G$ connected?
(c) What if f is everywhere positive but discontinuous at just one point?

Pugh Ed. 2, Ch. 2, $\# 8$ 3. The open cylinder is $(0,1) \times S^{1}$. The punctured plane is $\mathbb{R}^{2} \backslash\{0\}$.
(a) Prove that the open cylinder is homeomorphic to the punctured plane.
(b) Prove that the open cylinder, the double cone, and the plane are not homeomorphic.

April 2008, \#6. Let f be a continuous function on the unit square $[0,1] \times[0,1]$, and for $s \in[0,1]$ let $g(s)=\max \{f(s, t) \mid t \in[0,1]\}$. Show that g is a continuous function on $[0,1]$.

