TOPOLOGY 2 - HOMEWORK 10

(1) For a short exact sequence $0 \rightarrow A_{*} \xrightarrow{i} B_{*} \xrightarrow{j} C_{*} \rightarrow 0$ of chain complexes, prove that $\operatorname{Im}\left(j_{*}\right)=\operatorname{Ker}(\partial)$ in the associated sequence

$$
\cdots \rightarrow H_{n}(A) \xrightarrow{i_{*}} H_{n}(B) \xrightarrow{j_{*}} H_{n}(C) \xrightarrow{\partial} H_{n-1}(A) \rightarrow \cdots
$$

(2) If $A_{*} \subset B_{*}$ is a chain subcomplex; ie, $A_{n} \subset B_{n}$ and $\partial\left(A_{n+1}\right) \subset A_{n}$ for all n, prove that $(B / A)_{*} \doteq$ $\left\{B_{n} / A_{n}\right\}_{n \in \mathbb{N}}$ inherits the structure of a chain complex from B_{*} and that

$$
0 \rightarrow A_{*} \rightarrow B_{*} \rightarrow(B / A)_{*} \rightarrow 0
$$

is a short exact sequence of chain complexes.
(3) Hatcher, Section 2.1, Exercise 14.
(4) Hatcher, Section 2.1, Exercise 16.
(5) Hatcher, Section 2.1, Exercise 26.

Hint: You may use the following fact: for a topological space X and $x_{0} \in X, H_{1}(X) \cong \pi_{1}\left(X, x_{0}\right)^{a b}$.

